6,442 research outputs found

    Machine Learning Centered Energy Optimization In Cloud Computing: A Review

    Get PDF
    The rapid growth of cloud computing has led to a significant increase in energy consumption, which is a major concern for the environment and economy. To address this issue, researchers have proposed various techniques to improve the energy efficiency of cloud computing, including the use of machine learning (ML) algorithms. This research provides a comprehensive review of energy efficiency in cloud computing using ML techniques and extensively compares different ML approaches in terms of the learning model adopted, ML tools used, model strengths and limitations, datasets used, evaluation metrics and performance. The review categorizes existing approaches into Virtual Machine (VM) selection, VM placement, VM migration, and consolidation methods. This review highlights that among the array of ML models, Deep Reinforcement Learning, TensorFlow as a platform, and CloudSim for dataset generation are the most widely adopted in the literature and emerge as the best choices for constructing ML-driven models that optimize energy consumption in cloud computing

    Holistic Resource Management for Sustainable and Reliable Cloud Computing:An Innovative Solution to Global Challenge

    Get PDF
    Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services are frequently replicated across servers that subsequently increases server energy consumption and resource overhead. These two objectives can present a potential conflict within cloud resource management decision making that must balance between service consolidation and replication to minimize energy consumption whilst maximizing server availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively without affecting other Quality of Service parameters
    • …
    corecore