875 research outputs found

    Ehrhart Series of Polytopes Related to Symmetric Doubly-Stochastic Matrices

    Full text link
    In Ehrhart theory, the hh^*-vector of a rational polytope often provide insights into properties of the polytope that may be otherwise obscured. As an example, the Birkhoff polytope, also known as the polytope of real doubly-stochastic matrices, has a unimodal hh^*-vector, but when even small modifications are made to the polytope, the same property can be very difficult to prove. In this paper, we examine the hh^*-vectors of a class of polytopes containing real doubly-stochastic symmetric matrices.Comment: 11 pages; this revision removes an erroneous proposition from earlier versions and expands on the implication

    Unimodality Questions in Ehrhart Theory

    Get PDF
    An interesting open problem in Ehrhart theory is to classify those lattice polytopes having a unimodal h*-vector.Although various sufficient conditions have been found, necessary conditions remain a challenge. Highly-structured polytopes, such as the polytope of real doubly-stochastic matrices, have been proven to possess unimodal h*-vectors, but the same is unknown even for small variations of it. In this dissertation, we mainly consider two particular classes of polytopes: reflexive simplices and the polytope of symmetric real doubly-stochastic matrices. For the first class, we discuss an operation that preserves reflexivity, integral closure, and unimodality of the h*-vector, providing one explanation for why unimodality occurs in this setting. We also discuss the failure of proving unimodality in this setting using weak Lefschetz elements. With the second class, we prove partial unimodality results by examining their toric ideals and using a correspondence between these and regular triangulations of the polytopes. Lastly, we describe the computational methods used to help develop these results. Several software programs were used, and the code has proven useful outside of the main focus of this work

    Symmetric, Hankel-symmetric, and Centrosymmetric Doubly Stochastic Matrices

    Get PDF
    We investigate convex polytopes of doubly stochastic matrices having special structures: symmetric, Hankel symmetric, centrosymmetric, and both symmetric and Hankel symmetric. We determine dimensions of these polytopes and classify their extreme points. We also determine a basis of the real vector spaces generated by permutation matrices with these special structures

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Partitions of the polytope of Doubly Substochastic Matrices

    Full text link
    In this paper, we provide three different ways to partition the polytope of doubly substochastic matrices into subpolytopes via the prescribed row and column sums, the sum of all elements and the sub-defect respectively. Then we characterize the extreme points of each type of convex subpolytopes. The relations of the extreme points of the subpolytopes in the three partitions are also given

    Filterbank optimization with convex objectives and the optimality of principal component forms

    Get PDF
    This paper proposes a general framework for the optimization of orthonormal filterbanks (FBs) for given input statistics. This includes as special cases, many previous results on FB optimization for compression. It also solves problems that have not been considered thus far. FB optimization for coding gain maximization (for compression applications) has been well studied before. The optimum FB has been known to satisfy the principal component property, i.e., it minimizes the mean-square error caused by reconstruction after dropping the P weakest (lowest variance) subbands for any P. We point out a much stronger connection between this property and the optimality of the FB. The main result is that a principal component FB (PCFB) is optimum whenever the minimization objective is a concave function of the subband variances produced by the FB. This result has its grounding in majorization and convex function theory and, in particular, explains the optimality of PCFBs for compression. We use the result to show various other optimality properties of PCFBs, especially for noise-suppression applications. Suppose the FB input is a signal corrupted by additive white noise, the desired output is the pure signal, and the subbands of the FB are processed to minimize the output noise. If each subband processor is a zeroth-order Wiener filter for its input, we can show that the expected mean square value of the output noise is a concave function of the subband signal variances. Hence, a PCFB is optimum in the sense of minimizing this mean square error. The above-mentioned concavity of the error and, hence, PCFB optimality, continues to hold even with certain other subband processors such as subband hard thresholds and constant multipliers, although these are not of serious practical interest. We prove that certain extensions of this PCFB optimality result to cases where the input noise is colored, and the FB optimization is over a larger class that includes biorthogonal FBs. We also show that PCFBs do not exist for the classes of DFT and cosine-modulated FBs

    Approximating the Permanent with Fractional Belief Propagation

    Get PDF
    We discuss schemes for exact and approximate computations of permanents, and compare them with each other. Specifically, we analyze the Belief Propagation (BP) approach and its Fractional Belief Propagation (FBP) generalization for computing the permanent of a non-negative matrix. Known bounds and conjectures are verified in experiments, and some new theoretical relations, bounds and conjectures are proposed. The Fractional Free Energy (FFE) functional is parameterized by a scalar parameter γ[1;1]\gamma\in[-1;1], where γ=1\gamma=-1 corresponds to the BP limit and γ=1\gamma=1 corresponds to the exclusion principle (but ignoring perfect matching constraints) Mean-Field (MF) limit. FFE shows monotonicity and continuity with respect to γ\gamma. For every non-negative matrix, we define its special value γ[1;0]\gamma_*\in[-1;0] to be the γ\gamma for which the minimum of the γ\gamma-parameterized FFE functional is equal to the permanent of the matrix, where the lower and upper bounds of the γ\gamma-interval corresponds to respective bounds for the permanent. Our experimental analysis suggests that the distribution of γ\gamma_* varies for different ensembles but γ\gamma_* always lies within the [1;1/2][-1;-1/2] interval. Moreover, for all ensembles considered the behavior of γ\gamma_* is highly distinctive, offering an emprirical practical guidance for estimating permanents of non-negative matrices via the FFE approach.Comment: 42 pages, 14 figure
    corecore