2,102 research outputs found

    Intrinsic universality and the computational power of self-assembly

    Full text link
    This short survey of recent work in tile self-assembly discusses the use of simulation to classify and separate the computational and expressive power of self-assembly models. The journey begins with the result that there is a single universal tile set that, with proper initialization and scaling, simulates any tile assembly system. This universal tile set exhibits something stronger than Turing universality: it captures the geometry and dynamics of any simulated system. From there we find that there is no such tile set in the noncooperative, or temperature 1, model, proving it weaker than the full tile assembly model. In the two-handed or hierarchal model, where large assemblies can bind together on one step, we encounter an infinite set, of infinite hierarchies, each with strictly increasing simulation power. Towards the end of our trip, we find one tile to rule them all: a single rotatable flipable polygonal tile that can simulate any tile assembly system. It seems this could be the beginning of a much longer journey, so directions for future work are suggested.Comment: In Proceedings MCU 2013, arXiv:1309.104

    Visibility Graphs, Dismantlability, and the Cops and Robbers Game

    Get PDF
    We study versions of cop and robber pursuit-evasion games on the visibility graphs of polygons, and inside polygons with straight and curved sides. Each player has full information about the other player's location, players take turns, and the robber is captured when the cop arrives at the same point as the robber. In visibility graphs we show the cop can always win because visibility graphs are dismantlable, which is interesting as one of the few results relating visibility graphs to other known graph classes. We extend this to show that the cop wins games in which players move along straight line segments inside any polygon and, more generally, inside any simply connected planar region with a reasonable boundary. Essentially, our problem is a type of pursuit-evasion using the link metric rather than the Euclidean metric, and our result provides an interesting class of infinite cop-win graphs.Comment: 23 page

    Requirements for Topology in 3D GIS

    Get PDF
    Topology and its various benefits are well understood within the context of 2D Geographical Information Systems. However, requirements in three-dimensional (3D) applications have yet to be defined, with factors such as lack of users' familiarity with the potential of such systems impeding this process. In this paper, we identify and review a number of requirements for topology in 3D applications. The review utilises existing topological frameworks and data models as a starting point. Three key areas were studied for the purposes of requirements identification, namely existing 2D topological systems, requirements for visualisation in 3D and requirements for 3D analysis supported by topology. This was followed by analysis of application areas such as earth sciences and urban modelling which are traditionally associated with GIS, as well as others including medical, biological and chemical science. Requirements for topological functionality in 3D were then grouped and categorised. The paper concludes by suggesting that these requirements can be used as a basis for the implementation of topology in 3D. It is the aim of this review to serve as a focus for further discussion and identification of additional applications that would benefit from 3D topology. © 2006 The Authors. Journal compilation © 2006 Blackwell Publishing Ltd

    External polygon containment problems

    Get PDF
    AbstractGiven a convex polygonal object P with k vertices and an environment consisting of polygonal obstacles with a total of n corners, we seek a placement for the largest copy of P that does not intersect any of the obstacles, allowing translation, rotation and scaling. We employ the parametric search technique of Megiddo (1983), and the fixed size polygon placement algorithms developed by Leven and Sharir (1987), to obtain an algorithm that runs in time O(k2nλ6(kn)log3(kn)loglog(kn)). We also present several other efficient algorithms for restricted variants of the extremal polygon containment problem, using the same ideas. These variants include: placement of the largest homothetic copies of one or two convex polygons in another convex polygon and placement of the largest similar copy of a triangle in a convex polygon

    Optimal clustering of a pair of irregular objects

    No full text
    Cutting and packing problems arise in many fields of applications and theory. When dealing with irregular objects, an important subproblem is the identification of the optimal clustering of two objects. Within this paper we consider a container (rectangle, circle, convex polygon) of variable sizes and two irregular objects bounded by circular arcs and/or line segments, that can be continuously translated and rotated. In addition minimal allowable distances between objects and between each object and the frontier of a container, may be imposed. The objects should be arranged within a container such that a given objective will reach its minimal value. We consider a polynomial function as the objective, which depends on the variable parameters associated with the objects and the container. The paper presents a universal mathematical model and a solution strategy which are based on the concept of phi-functions and provide new benchmark instances of finding the containing region that has either minimal area, perimeter or homothetic coefficient of a given container, as well as finding the convex polygonal hull (or its approximation) of a pair of objects
    • …
    corecore