1,373 research outputs found

    Vertex Disjoint Path in Upward Planar Graphs

    Full text link
    The kk-vertex disjoint paths problem is one of the most studied problems in algorithmic graph theory. In 1994, Schrijver proved that the problem can be solved in polynomial time for every fixed kk when restricted to the class of planar digraphs and it was a long standing open question whether it is fixed-parameter tractable (with respect to parameter kk) on this restricted class. Only recently, \cite{CMPP}.\ achieved a major breakthrough and answered the question positively. Despite the importance of this result (and the brilliance of their proof), it is of rather theoretical importance. Their proof technique is both technically extremely involved and also has at least double exponential parameter dependence. Thus, it seems unrealistic that the algorithm could actually be implemented. In this paper, therefore, we study a smaller class of planar digraphs, the class of upward planar digraphs, a well studied class of planar graphs which can be drawn in a plane such that all edges are drawn upwards. We show that on the class of upward planar digraphs the problem (i) remains NP-complete and (ii) the problem is fixed-parameter tractable. While membership in FPT follows immediately from \cite{CMPP}'s general result, our algorithm has only single exponential parameter dependency compared to the double exponential parameter dependence for general planar digraphs. Furthermore, our algorithm can easily be implemented, in contrast to the algorithm in \cite{CMPP}.Comment: 14 page

    Finding k partially disjoint paths in a directed planar graph

    Get PDF
    The {\it partially disjoint paths problem} is: {\it given:} a directed graph, vertices r1,s1,…,rk,skr_1,s_1,\ldots,r_k,s_k, and a set FF of pairs {i,j}\{i,j\} from {1,…,k}\{1,\ldots,k\}, {\it find:} for each i=1,…,ki=1,\ldots,k a directed ri−sir_i-s_i path PiP_i such that if {i,j}∈F\{i,j\}\in F then PiP_i and PjP_j are disjoint. We show that for fixed kk, this problem is solvable in polynomial time if the directed graph is planar. More generally, the problem is solvable in polynomial time for directed graphs embedded on a fixed compact surface. Moreover, one may specify for each edge a subset of {1,…,k}\{1,\ldots,k\} prescribing which of the ri−sir_i-s_i paths are allowed to traverse this edge

    Are there any good digraph width measures?

    Full text link
    Several different measures for digraph width have appeared in the last few years. However, none of them shares all the "nice" properties of treewidth: First, being \emph{algorithmically useful} i.e. admitting polynomial-time algorithms for all \MS1-definable problems on digraphs of bounded width. And, second, having nice \emph{structural properties} i.e. being monotone under taking subdigraphs and some form of arc contractions. As for the former, (undirected) \MS1 seems to be the least common denominator of all reasonably expressive logical languages on digraphs that can speak about the edge/arc relation on the vertex set.The latter property is a necessary condition for a width measure to be characterizable by some version of the cops-and-robber game characterizing the ordinary treewidth. Our main result is that \emph{any reasonable} algorithmically useful and structurally nice digraph measure cannot be substantially different from the treewidth of the underlying undirected graph. Moreover, we introduce \emph{directed topological minors} and argue that they are the weakest useful notion of minors for digraphs

    The Complexity of Routing with Few Collisions

    Full text link
    We study the computational complexity of routing multiple objects through a network in such a way that only few collisions occur: Given a graph GG with two distinct terminal vertices and two positive integers pp and kk, the question is whether one can connect the terminals by at least pp routes (e.g. paths) such that at most kk edges are time-wise shared among them. We study three types of routes: traverse each vertex at most once (paths), each edge at most once (trails), or no such restrictions (walks). We prove that for paths and trails the problem is NP-complete on undirected and directed graphs even if kk is constant or the maximum vertex degree in the input graph is constant. For walks, however, it is solvable in polynomial time on undirected graphs for arbitrary kk and on directed graphs if kk is constant. We additionally study for all route types a variant of the problem where the maximum length of a route is restricted by some given upper bound. We prove that this length-restricted variant has the same complexity classification with respect to paths and trails, but for walks it becomes NP-complete on undirected graphs

    A Trichotomy for Regular Simple Path Queries on Graphs

    Full text link
    Regular path queries (RPQs) select nodes connected by some path in a graph. The edge labels of such a path have to form a word that matches a given regular expression. We investigate the evaluation of RPQs with an additional constraint that prevents multiple traversals of the same nodes. Those regular simple path queries (RSPQs) find several applications in practice, yet they quickly become intractable, even for basic languages such as (aa)* or a*ba*. In this paper, we establish a comprehensive classification of regular languages with respect to the complexity of the corresponding regular simple path query problem. More precisely, we identify the fragment that is maximal in the following sense: regular simple path queries can be evaluated in polynomial time for every regular language L that belongs to this fragment and evaluation is NP-complete for languages outside this fragment. We thus fully characterize the frontier between tractability and intractability for RSPQs, and we refine our results to show the following trichotomy: Evaluations of RSPQs is either AC0, NL-complete or NP-complete in data complexity, depending on the regular language L. The fragment identified also admits a simple characterization in terms of regular expressions. Finally, we also discuss the complexity of the following decision problem: decide, given a language L, whether finding a regular simple path for L is tractable. We consider several alternative representations of L: DFAs, NFAs or regular expressions, and prove that this problem is NL-complete for the first representation and PSPACE-complete for the other two. As a conclusion we extend our results from edge-labeled graphs to vertex-labeled graphs and vertex-edge labeled graphs.Comment: 15 pages, conference submissio
    • …
    corecore