2,484 research outputs found

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Optimizing Weights And Biases in MLP Using Whale Optimization Algorithm

    Get PDF
    Artificial Neural Networks are intelligent and non-parametric mathematical models inspired by the human nervous system. They have been widely studied and applied for classification, pattern recognition and forecasting problems. The main challenge of training an Artificial Neural network is its learning process, the nonlinear nature and the unknown best set of main controlling parameters (weights and biases). When the Artificial Neural Networks are trained using the conventional training algorithm, they get caught in the local optima stagnation and slow convergence speed; this makes the stochastic optimization algorithm a definitive alternative to alleviate the drawbacks. This thesis proposes an algorithm based on the recently proposed Whale Optimization Algorithm(WOA). The algorithm has proven to solve a wide range of optimization problems and outperform existing algorithms. The successful implementation of this algorithm motivated our attempts to benchmark its performance in training feed-forward neural networks. We have taken a set of 20 datasets with different difficulty levels and tested the proposed WOA-MLP based trainer. Further, the results are verified by comparing WOA-MLP with the back propagation algorithms and six evolutionary techniques. The results have proved that the proposed trainer can outperform the current algorithms on the majority of datasets in terms of local optima avoidance and convergence speed

    Meta-heuristic combining prior online and offline information for the quadratic assignment problem

    Get PDF
    The construction of promising solutions for NP-hard combinatorial optimization problems (COPs) in meta-heuristics is usually based on three types of information, namely a priori information, a posteriori information learned from visited solutions during the search procedure, and online information collected in the solution construction process. Prior information reflects our domain knowledge about the COPs. Extensive domain knowledge can surely make the search effective, yet it is not always available. Posterior information could guide the meta-heuristics to globally explore promising search areas, but it lacks local guidance capability. On the contrary, online information can capture local structures, and its application can help exploit the search space. In this paper, we studied the effects of using this information on metaheuristic's algorithmic performances for the COPs. The study was illustrated by a set of heuristic algorithms developed for the quadratic assignment problem. We first proposed an improved scheme to extract online local information, then developed a unified framework under which all types of information can be combined readily. Finally, we studied the benefits of the three types of information to meta-heuristics. Conclusions were drawn from the comprehensive study, which can be used as principles to guide the design of effective meta-heuristic in the future

    Optimal consignment stocking policies for a supply chain under different system constraints

    Get PDF
    The research aims are to enable the decision maker of an integrated vendor-buyer system under Consignment Stock (CS) policy to make the optimal/sub-optimal production/replenishment decisions when some general and realistic critical factors are considered. In the system, the vendor produces one product at a finite rate and ships the outputs by a number of equal-sized lots within a production cycle. Under a long-term CS agreement, the vendor maintains a certain inventory level at the buyer’s warehouse, and the buyer compensates the vendor only for the consumed products. The holding cost consists of a storage component and a financial component. Moreover, both of the cases that the unit holding costs may be higher at the buyer or at the vendor are considered. Based upon such a system, four sets of inventory models are developed each of which considers one more factor than the former. The first set of models allows a controllable lead-time with an additional investment and jointly determines the shipping size, the number of shipments, and the lead time, that minimize the yearly joint total expected cost (JTEC) of the system. The second set of models considers a buyer’s capacity limitation which causes some shipments to be delayed so that the arrival of these shipments does not cause the buyer’s inventory to go beyond its limitation. As a result, the number of delayed shipments is added as the fourth decision variable. A variable demand rate is allowed in the third set of models. Uncertainty caused by the varying demand are controlled by a safety factor, which becomes the fifth decision variable. Finally, the risk of obsolescence of the product is considered in the fourth model. The first model is solved analytically, whereas the rest are not, mainly because of the complexity of the problem and the number of variables being considered. Three doubly-hybrid meta-heuristic algorithms that combine two different hybrid meta-heuristic algorithms are developed to provide a solution procedure for the rest of models. Numerical experiments illustrate the solution procedures and reveal the effects of the buyer’s capacity limitation, the effects of the variable demand rate, and the effects of the risk of obsolescence, on the system. Furthermore, sensitivity analysis shows that some of the system parameters (such as the backorder penalty, the extra space penalty, the ratio of the unit holding cost of the vendor over that of the buyer) are very influential to the joint system total cost and the optimal solutions of the decision variables

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    Adaptive primal-dual genetic algorithms in dynamic environments

    Get PDF
    This article is placed here with permission of IEEE - Copyright @ 2010 IEEERecently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 70431003 and Grant 70671020, by the National Innovation Research Community Science Foundation of China under Grant 60521003, by the National Support Plan of China under Grant 2006BAH02A09, by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/E060722/1, and by the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    A comparative study of metaheuristic algorithms for the fertilizer optimization problem

    Get PDF
    Hard combinatorial optimization (CO) problems pose challenges to traditional algorithmic solutions. The search space usually contains a large number of local optimal points and the computational cost to reach a global optimum may be too high for practical use. In this work, we conduct a comparative study of several state-of-the-art metaheuristic algorithms for hard CO problems solving. Our study is motivated by an industrial application called the Fertilizer Blends Optimization. We focus our study on a number of local search metaheuristics and analyze their performance in terms of both runtime efficiency and solution quality. We show that local search granularity (move step size) and the downhill move probability are two major factors that affect algorithm performance, and we demonstrate how experimental tuning work can be applied to obtain good performance of the algorithms. Our empirical result suggests that the well-known Simulated Annealing (SA) algorithm showed the best performance on the fertilizer problem. The simple Iterated Improvement Algorithm (IIA) also performed surprisingly well by combining strict uphill move and random neighborhood selection. A novel approach, called Delivery Network Model (DNM) algorithm, was also shown to be competitive, but it has the disadvantage of being very sensitive to local search granularity. The constructive local search method (GRASP), which combines heuristic space sampling and local search, outperformed IIA without a construction phase; however, the improvement in performance is limited and generally speaking, local search performance is not sensitive to initial search positions in our studied fertilizer problem

    Evolutionary Algorithms with Mixed Strategy

    Get PDF
    corecore