3,226 research outputs found

    FADI: a fault-tolerant environment for open distributed computing

    Get PDF
    FADI is a complete programming environment that serves the reliable execution of distributed application programs. FADI encompasses all aspects of modern fault-tolerant distributed computing. The built-in user-transparent error detection mechanism covers processor node crashes and hardware transient failures. The mechanism also integrates user-assisted error checks into the system failure model. The nucleus non-blocking checkpointing mechanism combined with a novel selective message logging technique delivers an efficient, low-overhead backup and recovery mechanism for distributed processes. FADI also provides means for remote automatic process allocation on the distributed system nodes

    Characterizing Deep-Learning I/O Workloads in TensorFlow

    Full text link
    The performance of Deep-Learning (DL) computing frameworks rely on the performance of data ingestion and checkpointing. In fact, during the training, a considerable high number of relatively small files are first loaded and pre-processed on CPUs and then moved to accelerator for computation. In addition, checkpointing and restart operations are carried out to allow DL computing frameworks to restart quickly from a checkpoint. Because of this, I/O affects the performance of DL applications. In this work, we characterize the I/O performance and scaling of TensorFlow, an open-source programming framework developed by Google and specifically designed for solving DL problems. To measure TensorFlow I/O performance, we first design a micro-benchmark to measure TensorFlow reads, and then use a TensorFlow mini-application based on AlexNet to measure the performance cost of I/O and checkpointing in TensorFlow. To improve the checkpointing performance, we design and implement a burst buffer. We find that increasing the number of threads increases TensorFlow bandwidth by a maximum of 2.3x and 7.8x on our benchmark environments. The use of the tensorFlow prefetcher results in a complete overlap of computation on accelerator and input pipeline on CPU eliminating the effective cost of I/O on the overall performance. The use of a burst buffer to checkpoint to a fast small capacity storage and copy asynchronously the checkpoints to a slower large capacity storage resulted in a performance improvement of 2.6x with respect to checkpointing directly to slower storage on our benchmark environment.Comment: Accepted for publication at pdsw-DISCS 201

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page

    Performance optimization of checkpointing schemes with task duplication

    Get PDF
    In checkpointing schemes with task duplication, checkpointing serves two purposes: detecting faults by comparing the processors' states at checkpoints, and reducing fault recovery time by supplying a safe point to rollback to. In this paper, we show that, by tuning the checkpointing schemes to a given architecture, a significant reduction in the execution time can be achieved. The main idea is to use two types of checkpoints: compare-checkpoints (comparing the states of the redundant processes to detect faults) and store-checkpoints (storing the states to reduce recovery time). With two types of checkpoints, we can use both the comparison and storage operations in an efficient way and improve the performance of checkpointing schemes. Results we obtained show that, in some cases, using compare and store checkpoints can reduce the overhead of DMR checkpointing schemes by as much as 30 percent
    • 

    corecore