2,514 research outputs found

    A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots

    Get PDF
    Mobile robots are increasingly being applied in a variety of sectors, including agricultural, firefighting, and search and rescue operations. Robotics and autonomous technology research and development have played a major role in making this possible. Before a robot can reliably and effectively navigate a space without human aid, there are still several challenges to be addressed. When planning a path to its destination, the robot should be able to gather information from its surroundings and take the appropriate actions to avoid colliding with obstacles along the way. The following review analyses and compares 200 articles from two databases, Scopus and IEEE Xplore, and selects 60 articles as references from those articles. This evaluation focuses mostly on the accuracy of the different path-planning algorithms. Common collision-free path planning methodologies are examined in this paper, including classical or traditional and modern intelligence techniques, as well as both global and local approaches, in static and dynamic environments. Classical or traditional methods, such as Roadmaps (Visibility Graph and Voronoi Diagram), Potential Fields, and Cell Decomposition, and modern methodologies such as heuristic-based (Dijkstra Method, A* Algorithms, and D* Algorithms), metaheuristics algorithms (such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), and neural systems such as fuzzy neural networks or fuzzy logic (FL) and Artificial Neural Networks (ANN) are described in this report. In this study, we outline the ideas, benefits, and downsides of modeling and path-searching technologies for a mobile robot

    Obstacle Avoidance Scheme Based Elite Opposition Bat Algorithm for Unmanned Ground Vehicles

    Get PDF
    Unmanned Ground Vehicles (UGVs) are intelligent vehicles that operate in an obstacle environment without an onboard human operator but can be controlled autonomously using an obstacle avoidance system or by a human operator from a remote location. In this research, an obstacle avoidance scheme-based elite opposition bat algorithm (EOBA) for UGVs was developed. The obstacle avoidance system comprises a simulation map, a perception system for obstacle detection, and the implementation of EOBA for generating an optimal collision-free path that led the UGV to the goal location. Three distance thresholds of 0.1 m, 0.2 m, and 0.3 m was used in the obstacle detection stage to determine the optimal distance threshold for obstacle avoidance. The performance of the obstacle avoidance scheme was compared with that of bat algorithm (BA) and particle swarm optimization (PSO) techniques. The simulation results show that the distance threshold of 0.3 m is the optimal threshold for obstacle avoidance provided that the size of the obstacle does not exceed the size of the UGV. The EOBA based scheme when compared with BA and PSO schemes obtained an average percentage reduction of 21.82% in terms of path length and 60% in terms of time taken to reach the target destination. The uniqueness of this approach is that the UGV avoid collision with an obstacle at a distance of 0.3 m from nearby obstacles as against taking three steps backward before avoiding obstacl

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Modeling the power consumption of a Wifibot and studying the role of communication cost in operation time

    Get PDF
    Mobile robots are becoming part of our every day living at home, work or entertainment. Due to their limited power capabilities, the development of new energy consumption models can lead to energy conservation and energy efficient designs. In this paper, we carry out a number of experiments and we focus on the motors power consumption of a specific robot called Wifibot. Based on the experimentation results, we build models for different speed and acceleration levels. We compare the motors power consumption to other robot running modes. We, also, create a simple robot network scenario and we investigate whether forwarding data through a closer node could lead to longer operation times. We assess the effect energy capacity, traveling distance and data rate on the operation time

    Application of Swarm Intelligence in Disaster Management: A Review

    Get PDF
    The efficient use of Swarm Intelligence in Disaster management is discussed in this paper. Many lives are lost in Disaster affected area, the rescue team cannot reach everyone to rescue them this where Swarm Intelligence can be used. The Swarm Intelligence is a collective behavior to perform multiple task. SI can be used in searching and rescue operation in the disaster affected area, the swarm of Drones and bots deployed to locate the lives and give their exact location so that they can be rescued. The drones can analyze the area a give instruction to the ground bots. Obstacle avoidance can be used for clearing path for the rescue team to reach the location of the stuck person. Bots can combine together and work as one which increases their strength and may clear path. Swarm Intelligence is effective in many areas in Disaster Management
    • …
    corecore