6,351 research outputs found

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins

    Get PDF
    : Label-free detection, analysis, and rapid tracking of nanoparticles is crucial for future ultrasensitive sensing applications, ranging from understanding of biological interactions to the study of size-dependent classical-quantum transitions. Yet optical techniques to distinguish nanoparticles directly among their background remain challenging. Here we present amplified interferometric scattering microscopy (aiSCAT) as a new all-optical method capable of detecting individual nanoparticles as small as 15 kDa proteins that is equivalent to half a GFP. By balancing scattering and reflection amplitudes the interference contrast of the nanoparticle signal is amplified 1 to 2 orders of magnitude. Beyond high sensitivity, a-iSCAT allows high-speed image acquisition exceeding several hundreds of frames-per-second. We showcase the performance of our approach by detecting single Streptavidin binding events and by tracking single Ferritin proteins at 400 frames-per-second with 12 nm localization precision over seconds. Moreover, due to its extremely simple experimental realization, this advancement finally enables a cheap and routine implementation of label-free all-optical single nanoparticle detection platforms with sensitivity operating at the single protein level.Peer ReviewedPostprint (author's final draft

    An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions

    Get PDF
    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality

    Structural characterization of biocompatible reverse micelles using Small-Angle X-ray Scattering, 31P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy

    Get PDF
    The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri-n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.Fil: Odella, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Falcone, Ruben Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ceolín, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Silber, Juana J.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; ArgentinaFil: Correa, Nestor Mariano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Enhanced surface interaction of water confined in hierarchical porous polymers induced by hydrogen bonding

    Get PDF
    Hierarchical porous polymer systems are increasingly applied to catalysis, bioengineering, or separation technology because of the versatility provided by the connection of mesopores with percolating macroporous structures. Nuclear magnetic resonance (NMR) is a suitable technique for the study of such systems as it can detect signals stemming from the confined liquid and translate this information into pore size, molecular mobility, and liquid−surface interactions. We focus on the properties of water confined in macroporous polymers of ethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly- (EGDMA-co-HEMA)] with different amounts of cross-linkers, in which a substantial variation of hydroxyl groups is achieved. As soft polymer scaffolds may swell upon saturation with determined liquids, the use of NMR is particularly important as it measures the system in its operational state. This study combines different NMR techniques to obtain information on surface interactions of water with hydrophilic polymer chains. A transition from a surface-induced relaxation in which relaxivity depends on the pore size to a regime where the organic pore surface strongly restricts water diffusion is observed. Surface affinities are defined through the molecular residence times near the network surface.Fil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Gomez, Cesar Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Strumia, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Stapf, Siegfried. Technische Universität Ilmenau; AlemaniaFil: Mattea, Carlos. Technische Universität Ilmenau; AlemaniaFil: Monti, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Acosta, Rodolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores

    Get PDF
    Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies

    Macroscale and Nanoscale Photoelectrochemical Behavior of p-Type Si(111) Covered by a Single Layer of Graphene or Hexagonal Boron Nitride

    Get PDF
    Two-dimensional (2D) materials may enable a general approach to the introduction of a dipole at a semiconductor surface as well as control over other properties of the double layer at a semiconductor/liquid interface. Vastly different properties can be found in the 2D materials currently studied due in part to the range of the distribution of density-of-states. In this work, the open-circuit voltage (V_(oc)) of p-Si–H, p-Si/Gr (graphene), and p-Si/h-BN (hexagonal boron nitride) in contact with a series of one-electron outer-sphere redox couples was investigated by macroscale measurements as well as by scanning electrochemical cell microscopy (SECCM). The band gaps of Gr and h-BN (0–5.97 eV) encompass the wide range of band gaps for 2D materials, so these interfaces (p-Si/Gr and p-Si/h-BN) serve as useful references to understand the behavior of 2D materials more generally. The value of V_(oc) shifted with respect to the effective potential of the contacting solution, with slopes (ΔV_(oc)/ΔE_(Eff)) of −0.27 and −0.38 for p-Si/Gr and p-Si/h-BN, respectively, indicating that band bending at the p-Si/h-BN and p-Si/Gr interfaces responds at least partially to changes in the electrochemical potential of the contacting liquid electrolyte. Additionally, SECCM is shown to be an effective method to interrogate the nanoscale photoelectrochemical behavior of an interface, showing little spatial variance over scales exceeding the grain size of the CVD-grown 2D materials in this work. The measurements demonstrated that the polycrystalline nature of the 2D materials had little effect on the results and confirmed that the macroscale measurements reflected the junction behavior at the nanoscale

    Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks

    Get PDF
    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin?spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.Fil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Silletta, Emilia Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Gomez, Cesar Gerardo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Universidad Nacional de Córdoba. Instituto de Investigación y Desarrollo En Ingeniería de Procesos y Química Aplicada. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación y Desarrollo En Ingeniería de Procesos y Química Aplicada.; ArgentinaFil: Strumia, Miriam Cristina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Stapf, Siegfried. Ilmenau University of Technology; AlemaniaFil: Monti, Gustavo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Mattea, Carlos. Ilmenau University of Technology; AlemaniaFil: Acosta, Rodolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin
    corecore