177,703 research outputs found

    Constraining the K ¯ N coupled channel dynamics using femtoscopic correlations at the LHC

    Get PDF
    The interaction of K - with protons is characterised by the presence of several coupled channels, systems like K ¯ n and π Σ with a similar mass and the same quantum numbers as the K - p state. The strengths of these couplings to the K - p system are of crucial importance for the understanding of the nature of the Λ (1405) resonance and of the attractive K - p strong interaction. In this article, we present measurements of the K - p correlation functions in relative momentum space obtained in pp collisions at s=13 Te, in p–Pb collisions at sNN=5.02 Te, and (semi)peripheral Pb–Pb collisions at sNN=5.02 Te. The emitting source size, composed of a core radius anchored to the K + p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the K ¯ n and π Σ inelastic channels on the measured K - p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights ω , necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured K - p interaction indicates that, while the π Σ – K - p dynamics is well reproduced by the model, the coupling to the K ¯ n channel in the model is currently underestimated

    Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity

    Full text link
    A new version of the invariant imbedding theory for the propagation of coupled waves in inhomogeneous media is applied to the mode conversion of high frequency electromagnetic waves into electrostatic modes in cold, magnetized and stratified plasmas. The cases where the external magnetic field is applied perpendicularly to the direction of inhomogeneity and the electron density profile is linear are considered. Extensive and numerically exact results for the mode conversion coefficients, the reflectances and the wave electric and magnetic field profiles inside the inhomogeneous plasma are obtained. The dependences of mode conversion phenomena on the magnitude of the external magnetic field, the incident angle and the wave frequency are explored in detail.Comment: 11 figures, to be published in Physics of Plasma

    The resource theory of informational nonequilibrium in thermodynamics

    Get PDF
    We review recent work on the foundations of thermodynamics in the light of quantum information theory. We adopt a resource-theoretic perspective, wherein thermodynamics is formulated as a theory of what agents can achieve under a particular restriction, namely, that the only state preparations and transformations that they can implement for free are those that are thermal at some fixed temperature. States that are out of thermal equilibrium are the resources. We consider the special case of this theory wherein all systems have trivial Hamiltonians (that is, all of their energy levels are degenerate). In this case, the only free operations are those that add noise to the system (or implement a reversible evolution) and the only nonequilibrium states are states of informational nonequilibrium, that is, states that deviate from the maximally mixed state. The degree of this deviation we call the state's nonuniformity; it is the resource of interest here, the fuel that is consumed, for instance, in an erasure operation. We consider the different types of state conversion: exact and approximate, single-shot and asymptotic, catalytic and noncatalytic. In each case, we present the necessary and sufficient conditions for the conversion to be possible for any pair of states, emphasizing a geometrical representation of the conditions in terms of Lorenz curves. We also review the problem of quantifying the nonuniformity of a state, in particular through the use of generalized entropies. Quantum state conversion problems in this resource theory can be shown to be always reducible to their classical counterparts, so that there are no inherently quantum-mechanical features arising in such problems. This body of work also demonstrates that the standard formulation of the second law of thermodynamics is inadequate as a criterion for deciding whether or not a given state transition is possible.Comment: 51 pages, 9 figures, Revised Versio

    Dynkin games with Poisson random intervention times

    Get PDF
    This paper introduces a new class of Dynkin games, where the two players are allowed to make their stopping decisions at a sequence of exogenous Poisson arrival times. The value function and the associated optimal stopping strategy are characterized by the solution of a backward stochastic differential equation. The paper further applies the model to study the optimal conversion and calling strategies of convertible bonds, and their asymptotics when the Poisson intensity goes to infinity

    Superparticle Models with Tensorial Central Charges

    Get PDF
    A generalization of the Ferber-Shirafuji formulation of superparticle mechanics is considered. The generalized model describes the dynamics of a superparticle in a superspace extended by tensorial central charge coordinates and commuting twistor-like spinor variables. The D=4 model contains a continuous real parameter a≥0a\geq 0 and at a=0 reduces to the SU(2,2|1) supertwistor Ferber-Shirafuji model, while at a=1 one gets an OSp(1|8) supertwistor model of ref. [1] (hep-th/9811022) which describes BPS states with all but one unbroken target space supersymmetries. When 0<a<1 the model admits an OSp(2|8) supertwistor description, and when a>1 the supertwistor group becomes OSp(1,1|8). We quantize the model and find that its quantum spectrum consists of massless states of an arbitrary (half)integer helicity. The independent discrete central charge coordinate describes the helicity spectrum. We also outline the generalization of the a=1 model to higher space-time dimensions and demonstrate that in D=3,4,6 and 10, where the quantum states are massless, the extra degrees of freedom (with respect to those of the standard superparticle) parametrize compact manifolds. These compact manifolds can be associated with higher-dimensional helicity states. In particular, in D=10 the additional ``helicity'' manifold is isomorphic to the seven-sphere.Comment: 32 pages, LATEX, no figure
    • …
    corecore