66 research outputs found

    Simple eigenvalues of cubic vertex-transitive graphs

    Full text link
    If vv is an eigenvector for eigenvalue λ\lambda of a graph XX and α\alpha is an automorphism of XX, then α(v)\alpha(v) is also an eigenvector for λ\lambda. Thus it is rather exceptional for an eigenvalue of a vertex-transitive graph to be simple. We study cubic vertex-transitive graphs with a non-trivial simple eigenvalue, and discover remarkable connections to arc-transitivity, regular maps and Chebyshev polynomials.Comment: 22 p

    Graphs in the 3--sphere with maximum symmetry

    Full text link
    We consider the orientation-preserving actions of finite groups GG on pairs (S3,Γ)(S^3, \Gamma), where Γ\Gamma is a connected graph of genus g>1g>1, embedded in S3S^3. For each gg we give the maximum order mgm_g of such GG acting on (S3,Γ)(S^3, \Gamma) for all such ΓS3\Gamma\subset S^3. Indeed we will classify all graphs ΓS3\Gamma\subset S^3 which realize these mgm_g in different levels: as abstract graphs and as spatial graphs, as well as their group actions. Such maximum orders without the condition "orientation-preserving" are also addressed.Comment: 34 pages, to appear in Discrete Comput. Geo

    IST Austria Thesis

    Get PDF
    Algorithms in computational 3-manifold topology typically take a triangulation as an input and return topological information about the underlying 3-manifold. However, extracting the desired information from a triangulation (e.g., evaluating an invariant) is often computationally very expensive. In recent years this complexity barrier has been successfully tackled in some cases by importing ideas from the theory of parameterized algorithms into the realm of 3-manifolds. Various computationally hard problems were shown to be efficiently solvable for input triangulations that are sufficiently “tree-like.” In this thesis we focus on the key combinatorial parameter in the above context: we consider the treewidth of a compact, orientable 3-manifold, i.e., the smallest treewidth of the dual graph of any triangulation thereof. By building on the work of Scharlemann–Thompson and Scharlemann–Schultens–Saito on generalized Heegaard splittings, and on the work of Jaco–Rubinstein on layered triangulations, we establish quantitative relations between the treewidth and classical topological invariants of a 3-manifold. In particular, among other results, we show that the treewidth of a closed, orientable, irreducible, non-Haken 3-manifold is always within a constant factor of its Heegaard genus

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix

    Planar graphs : a historical perspective.

    Get PDF
    The field of graph theory has been indubitably influenced by the study of planar graphs. This thesis, consisting of five chapters, is a historical account of the origins and development of concepts pertaining to planar graphs and their applications. The first chapter serves as an introduction to the history of graph theory, including early studies of graph theory tools such as paths, circuits, and trees. The second chapter pertains to the relationship between polyhedra and planar graphs, specifically the result of Euler concerning the number of vertices, edges, and faces of a polyhedron. Counterexamples and generalizations of Euler\u27s formula are also discussed. Chapter III describes the background in recreational mathematics of the graphs of K5 and K3,3 and their importance to the first characterization of planar graphs by Kuratowski. Further characterizations of planar graphs by Whitney, Wagner, and MacLane are also addressed. The focus of Chapter IV is the history and eventual proof of the four-color theorem, although it also includes a discussion of generalizations involving coloring maps on surfaces of higher genus. The final chapter gives a number of measurements of a graph\u27s closeness to planarity, including the concepts of crossing number, thickness, splitting number, and coarseness. The chapter conclused with a discussion of two other coloring problems - Heawood\u27s empire problem and Ringel\u27s earth-moon problem

    International Journal of Mathematical Combinatorics, Vol.1

    Get PDF
    The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 460 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences

    AUTOMORPHISM GROUPS OF MAPS, SURFACES AND SMARANDACHE GEOMETRIES

    Get PDF
    Automorphism groups survey similarities on mathematical systems, which appear nearly in all mathematical branches, such as those of algebra, combinatorics, geometry, · · · and theoretical physics, theoretical chemistry, etc.. In geometry, configurations with high symmetry born symmetrical patterns, a kind of beautiful pictures in aesthetics. Naturally, automorphism groups enable one to distinguish systems by similarity. More automorphisms simply more symmetries of that system. This fact has established the fundamental role of automorphism groups in modern sciences. So it is important for graduate students knowing automorphism groups with applications
    corecore