5,980 research outputs found

    Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise I: Frequentist analyses

    Get PDF
    Gravitational wave detectors will need optimal signal-processing algorithms to extract weak signals from the detector noise. Most algorithms designed to date are based on the unrealistic assumption that the detector noise may be modeled as a stationary Gaussian process. However most experiments exhibit a non-Gaussian ``tail'' in the probability distribution. This ``excess'' of large signals can be a troublesome source of false alarms. This article derives an optimal (in the Neyman-Pearson sense, for weak signals) signal processing strategy when the detector noise is non-Gaussian and exhibits tail terms. This strategy is robust, meaning that it is close to optimal for Gaussian noise but far less sensitive than conventional methods to the excess large events that form the tail of the distribution. The method is analyzed for two different signal analysis problems: (i) a known waveform (e.g., a binary inspiral chirp) and (ii) a stochastic background, which requires a multi-detector signal processing algorithm. The methods should be easy to implement: they amount to truncation or clipping of sample values which lie in the outlier part of the probability distribution.Comment: RevTeX 4, 17 pages, 8 figures, typos corrected from first version

    Enabling high confidence detections of gravitational-wave bursts

    Get PDF
    With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly studied when detailed models for the waveforms are available. However, one motivation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires data analysis techniques which do not depend on theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled gravitational wave signals have been hampered by transient noise artifacts, or "glitches," in the detectors. In some cases, even high signal-to-noise simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially any plausible signal could be detected with at most 2-3 σ\sigma level confidence. We have put forth the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and to provide robust waveform reconstruction and characterization of the astrophysical signals. Here we study BayesWave's capabilities for rejecting glitches while assigning high confidence to detection candidates through analytic approximations to the Bayesian evidence. Analytic results are tested with numerical experiments by adding simulated gravitational wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good agreement.Comment: 15 pages, 6 figures, submitted to PR

    Comparison of filters for detecting gravitational wave bursts in interferometric detectors

    Get PDF
    Filters developed in order to detect short bursts of gravitational waves in interferometric detector outputs are compared according to three main points. Conventional Receiver Operating Characteristics (ROC) are first built for all the considered filters and for three typical burst signals. Optimized ROC are shown for a simple pulse signal in order to estimate the best detection efficiency of the filters in the ideal case, while realistic ones obtained with filters working with several ``templates'' show how detection efficiencies can be degraded in a practical implementation. Secondly, estimations of biases and statistical errors on the reconstruction of the time of arrival of pulse-like signals are then given for each filter. Such results are crucial for future coincidence studies between Gravitational Wave detectors but also with neutrino or optical detectors. As most of the filters require a pre-whitening of the detector noise, the sensitivity to a non perfect noise whitening procedure is finally analysed. For this purpose lines of various frequencies and amplitudes are added to a Gaussian white noise and the outputs of the filters are studied in order to monitor the excess of false alarms induced by the lines. The comparison of the performances of the different filters finally show that they are complementary rather than competitive.Comment: 32 pages (14 figures), accepted for publication in Phys. Rev.

    Data analysis challenges in transient gravitational-wave astronomy

    Full text link
    Gravitational waves are radiative solutions of space-time dynamics predicted by Einstein's theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local space-time with the hope to detect deviations that would signal an impinging gravitational wave from a remote astrophysical source. Finding the rare and weak signature of gravitational waves buried in non-stationary and non-Gaussian instrument noise is a particularly challenging problem. We will give an overview of the data-analysis techniques and associated observational results obtained so far by Virgo (in Europe) and LIGO (in the US), along with the prospects offered by the up-coming advanced versions of those detectors.Comment: 7 pages, 5 figures, Proceedings of the ARENA'12 Conference, few minor change

    The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory

    Get PDF
    The mergers of supermassive black hole binaries (SMBHBs) promise to be incredible sources of gravitational waves (GWs). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of pulsar timing arrays, the nonoscillatory GW memory effect is detectable. Further, any burst of GWs will produce GW memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11 yr data set for GW memory. This data set is sensitive to very low-frequency GWs of ~3 to 400 nHz (periods of ~11 yr–1 month). Finding no evidence for GWs, we placed limits on the strain amplitude of GW memory events during the observation period. We then used the strain upper limits to place limits on the rate of GW memory causing events. At a strain of 2.5 × 10⁻¹⁴, corresponding to the median upper limit as a function of source sky position, we set a limit on the rate of GW memory events at <0.4 yr⁻¹. That strain corresponds to an SMBHB merger with reduced mass of ηM ~ 2 × 10¹⁰ M_⊙ and inclination of ι = π/3 at a distance of 1 Gpc. As a test of our analysis, we analyzed the NANOGrav 9 yr data set as well. This analysis found an anomolous signal, which does not appear in the 11 yr data set. This signal is not a GW, and its origin remains unknown
    corecore