7,437 research outputs found

    Algebraic Techniques for Low Communication Secure Protocols

    Get PDF
    Internet communication is often encrypted with the aid of mathematical problems that are hard to solve. Another method to secure electronic communication is the use of a digital lock of which the digital key must be exchanged first. PhD student Robbert de Haan (CWI) researched models for a guaranteed safe communication between two people without the exchange of a digital key and without assumptions concerning the practical difficulty of solving certain mathematical problems. In ancient times Julius Caesar used secret codes to make his messages illegible for spies. He upped every letter of the alphabet with three positions: A became D, Z became C, and so on. Usually, cryptographers research secure communication between two people through one channel that can be monitored by malevolent people. De Haan studied the use of multiple channels. A minority of these channels may be in the hands of adversaries that can intercept, replace or block the message. He proved the most efficient way to securely communicate along these channels and thus solved a fundamental cryptography problem that was introduced almost 20 years ago by Dole, Dwork, Naor and Yung

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Information-Theoretic Secure Outsourced Computation in Distributed Systems

    Get PDF
    Secure multi-party computation (secure MPC) has been established as the de facto paradigm for protecting privacy in distributed computation. One of the earliest secure MPC primitives is the Shamir\u27s secret sharing (SSS) scheme. SSS has many advantages over other popular secure MPC primitives like garbled circuits (GC) -- it provides information-theoretic security guarantee, requires no complex long-integer operations, and often leads to more efficient protocols. Nonetheless, SSS receives less attention in the signal processing community because SSS requires a larger number of honest participants, making it prone to collusion attacks. In this dissertation, I propose an agent-based computing framework using SSS to protect privacy in distributed signal processing. There are three main contributions to this dissertation. First, the proposed computing framework is shown to be significantly more efficient than GC. Second, a novel game-theoretical framework is proposed to analyze different types of collusion attacks. Third, using the proposed game-theoretical framework, specific mechanism designs are developed to deter collusion attacks in a fully distributed manner. Specifically, for a collusion attack with known detectors, I analyze it as games between secret owners and show that the attack can be effectively deterred by an explicit retaliation mechanism. For a general attack without detectors, I expand the scope of the game to include the computing agents and provide deterrence through deceptive collusion requests. The correctness and privacy of the protocols are proved under a covert adversarial model. Our experimental results demonstrate the efficiency of SSS-based protocols and the validity of our mechanism design

    Efficient Anonymous Biometric Matching in Privacy-Aware Environments

    Get PDF
    Video surveillance is an important tool used in security and environmental monitoring, however, the widespread deployment of surveillance cameras has raised serious privacy concerns. Many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. To identify these individuals for protection, the most reliable approach is to use biometric signals as they are immutable and highly discriminative. If misused, these characteristics of biometrics can seriously defeat the goal of privacy protection. In this dissertation, an Anonymous Biometric Access Control (ABAC) procedure is proposed based on biometric signals for privacy-aware video surveillance. The ABAC procedure uses Secure Multi-party Computational (SMC) based protocols to verify membership of an incoming individual without knowing his/her true identity. To make SMC-based protocols scalable to large biometric databases, I introduce the k-Anonymous Quantization (kAQ) framework to provide an effective and secure tradeoff of privacy and complexity. kAQ limits systems knowledge of the incoming individual to k maximally dissimilar candidates in the database, where k is a design parameter that controls the amount of complexity-privacy tradeoff. The relationship between biometric similarity and privacy is experimentally validated using a twin iris database. The effectiveness of the entire system is demonstrated based on a public iris biometric database. To provide the protected subjects with full access to their privacy information in video surveillance system, I develop a novel privacy information management system that allows subjects to access their information via the same biometric signals used for ABAC. The system is composed of two encrypted-domain protocols: the privacy information encryption protocol encrypts the original video records using the iris pattern acquired during ABAC procedure; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of my framework

    On security and privacy of consensus-based protocols in blockchain and smart grid

    Full text link
    In recent times, distributed consensus protocols have received widespread attention in the area of blockchain and smart grid. Consensus algorithms aim to solve an agreement problem among a set of nodes in a distributed environment. Participants in a blockchain use consensus algorithms to agree on data blocks containing an ordered set of transactions. Similarly, agents in the smart grid employ consensus to agree on specific values (e.g., energy output, market-clearing price, control parameters) in distributed energy management protocols. This thesis focuses on the security and privacy aspects of a few popular consensus-based protocols in blockchain and smart grid. In the blockchain area, we analyze the consensus protocol of one of the most popular payment systems: Ripple. We show how the parameters chosen by the Ripple designers do not prevent the occurrence of forks in the system. Furthermore, we provide the conditions to prevent any fork in the Ripple network. In the smart grid area, we discuss the privacy issues in the Economic Dispatch (ED) optimization problem and some of its recent solutions using distributed consensus-based approaches. We analyze two state of the art consensus-based ED protocols from Yang et al. (2013) and Binetti et al. (2014). We show how these protocols leak private information about the participants. We propose privacy-preserving versions of these consensus-based ED protocols. In some cases, we also improve upon the communication cost

    Rational Multiparty Computation

    Get PDF
    The field of rational cryptography considers the design of cryptographic protocols in the presence of rational agents seeking to maximize local utility functions. This departs from the standard secure multiparty computation setting, where players are assumed to be either honest or malicious. ^ We detail the construction of both a two-party and a multiparty game theoretic framework for constructing rational cryptographic protocols. Our framework specifies the utility function assumptions necessary to realize the privacy, correctness, and fairness guarantees for protocols. We demonstrate that our framework correctly models cryptographic protocols, such as rational secret sharing, where existing work considers equilibrium concepts that yield unreasonable equilibria. Similarly, we demonstrate that cryptography may be applied to the game theoretic domain, constructing an auction market not realizable in the original formulation. Additionally, we demonstrate that modeling players as rational agents allows us to design a protocol that destabilizes coalitions. Thus, we establish a mutual benefit from combining the two fields, while demonstrating the applicability of our framework to real-world market environments.^ We also give an application of game theory to adversarial interactions where cryptography is not necessary. Specifically, we consider adversarial machine learning, where the adversary is rational and reacts to the presence of a data miner. We give a general extension to classification algorithms that returns greater expected utility for the data miner than existing classification methods

    Measuring Information Security Awareness Efforts in Social Networking Sites – A Proactive Approach

    Get PDF
    For Social Network Sites to determine the effectiveness of their Information Security Awareness (ISA) techniques, many measurement and evaluation techniques are now in place to ensure controls are working as intended. While these techniques are inexpensive, they are all incident- driven as they are based on the occurrence of incident(s). Additionally, they do not present a true reflection of ISA since cyber-incidents are hardly reported. They are therefore adjudged to be post-mortem and risk permissive, the limitations that are inacceptable in industries where incident tolerance level is low. This paper aims at employing a non-incident statistic approach to measure ISA efforts. Using an object- oriented programming approach, PhP is employed as the coding language with MySQL database engine at the back-end to develop sOcialistOnline – a Social Network Sites (SNS) fully secured with multiple ISA techniques. Rather than evaluating the effectiveness of ISA efforts by success of attacks or occurrence of an event, password scanning is implemented to proactively measure the effects of ISA techniques in sOcialistOnline. Thus, measurement of ISA efforts is shifted from detective and corrective to preventive and anticipatory paradigms which are the best forms of information security approach

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic
    corecore