14,800 research outputs found

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind ā€“ the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies ā€“ so critical, in fact, itā€™s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    Manipulating the Contents of Consciousness

    Get PDF
    I argue for a manipulationist-mechanistic framework for content-NCC research in the case of visual consciousness (Bechtel 2008; Neisser 2012). Reference to mechanisms is common in the NCC research. Furthermore, recent developments in non-invasive brain stimulation techniques (NIBS) lend support to a manipulationist standpoint. The crucial question is to understand what is changed after manipulation of a brain mechanism. In the second part of the paper I review the literature on intentionalism, and argue that intervention on the neural mechanism is likely to change the intentional content of consciousness. This urges us to shift from content-NCC to what I call ā€œintentional mechanismsā€. Such mechanisms, it is argued, should be understood as neural prerequisites of conscious visual experience

    Twelve Theses on Reactive Rules for the Web

    Get PDF
    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) systems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desirable for a language of reactive rules tuned to programming Web and Semantic Web applications

    Networks: open, closed or complex. Connecting philosophy, design and innovation, part 3

    Full text link
    This is the third and final paper of a series bringing a philosophical investigation to matters of design and innovation. With the others examining: first, the urges to reconsider innovation from a creative, specifically design, direction (ā€˜Beyond Successā€™); and second, the type of dynamic innovation that may be thus reconsidered (ā€˜Ecstatic Innovationā€™); this paper will investigate a way of constructing this type of design-driven innovation. It will begin by looking at the networks that can be created to deliver a dynamic, continually innovative innovation and will start by considering two concepts of network: the open and the closed. While there seems to be an easy distinction to be made between open and closed, and its mapping onto similarly convenient ideas of good and bad, I hope to show that this is not the case. The complexity of networked forms of organisation demand that we bring to them a complexity of thought that comes from philosophy. Nevertheless, such an account will also need to engage with discourses from other disciplinary areas: notably organisational theory, innovation management and design. The outcome is of importance to thinking the organisational structures in which innovation is managed

    How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics

    Get PDF
    The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum non-locality in the framework of ontic structural realism (OSR), which integrates the notions of holism and non-separability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories of quantum physics, one can accomplish that task. In particular, Bohmian mechanics offers the best prospect for doing so. (2) In general, the paper seeks to bring OSR and the primitive ontology theories of quantum physics together: on the one hand, in order to be applicable to quantum mechanics, OSR has to consider what the quantum ontology of matter distributed in space-time is. On the other hand, as regards the primitive ontology theories, OSR provides the conceptual tools for these theories to answer the question of what the ontological status of the wave-function is.Comment: arXiv admin note: substantial text overlap with arXiv:1406.073

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before
    • ā€¦
    corecore