22,933 research outputs found

    Validating DLO models from shape observation

    Get PDF
    In this paper, the problem of fitting the model of deformable linear objects from the observation of the shape under the effect of known external forces like gravity is taken into account. The model of the deformable linear object is based on dynamic splines, allowing to obtain a reliable prediction of the object behavior while preserving a suitable efficiency and simplicity of the model. The object shape is measured by means of a calibrated vision system, and a fitting between the observed shape and the theoretical model is defined for validation. Experiments are executed in different conditions, showing the reliability of the proposed spline-based model

    Robot acting on moving bodies (RAMBO): Preliminary results

    Get PDF
    A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors

    Spline driven: high accuracy projectors for tomographic reconstruction from few projections

    Get PDF
    International audienceTomographic iterative reconstruction methods need a very thorough modeling of data. This point becomes critical when the number of available projections is limited. At the core of this issue is the projector design, i.e., the numerical model relating the representation of the object of interest to the projections on the detector. Voxel driven and ray driven projection models are widely used for their short execution time in spite of their coarse approximations. Distance driven model has an improved accuracy but makes strong approximations to project voxel basis functions. Cubic voxel basis functions are anisotropic, accurately modeling their projection is, therefore, computationally expensive. Both smoother and more isotropic basis functions better represent the continuous functions and provide simpler projectors. These considerations have led to the development of spherically symmetric volume elements, called blobs. Set apart their isotropy, blobs are often considered too computationally expensive in practice. In this paper, we consider using separable B-splines as basis functions to represent the object, and we propose to approximate the projection of these basis functions by a 2D separable model. When the degree of the B-splines increases, their isotropy improves and projections can be computed regardless of their orientation. The degree and the sampling of the B-splines can be chosen according to a tradeoff between approximation quality and computational complexity. We quantitatively measure the good accuracy of our model and compare it with other projectors, such as the distance-driven and the model proposed by Long et al. From the numerical experiments, we demonstrate that our projector with an improved accuracy better preserves the quality of the reconstruction as the number of projections decreases. Our projector with cubic B-splines requires about twice as many operations as a model based on voxel basis functions. Higher accuracy projectors can be used to improve the resolution of the existing systems, or to reduce the number of projections required to reach a given resolution, potentially reducing the dose absorbed by the patient

    Smoothing sparse and unevenly sampled curves using semiparametric mixed models: An application to online auctions

    Get PDF
    Functional data analysis can be challenging when the functional objects are sampled only very sparsely and unevenly. Most approaches rely on smoothing to recover the underlying functional object from the data which can be difficult if the data is irregularly distributed. In this paper we present a new approach that can overcome this challenge. The approach is based on the ideas of mixed models. Specifically, we propose a semiparametric mixed model with boosting to recover the functional object. While the model can handle sparse and unevenly distributed data, it also results in conceptually more meaningful functional objects. In particular, we motivate our method within the framework of eBay's online auctions. Online auctions produce monotonic increasing price curves that are often correlated across two auctions. The semiparametric mixed model accounts for this correlation in a parsimonious way. It also estimates the underlying increasing trend from the data without imposing model-constraints. Our application shows that the resulting functional objects are conceptually more appealing. Moreover, when used to forecast the outcome of an online auction, our approach also results in more accurate price predictions compared to standard approaches. We illustrate our model on a set of 183 closed auctions for Palm M515 personal digital assistants

    BayesX: Analysing Bayesian structured additive regression models

    Get PDF
    There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the public domain software BayesX for estimating complex regression models with structured additive predictor. The program extends the capabilities of existing software for semiparametric regression. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are Generalized Additive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive Models, Geographically Weighted Regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories may be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazardrate models

    Estimation of extended mixed models using latent classes and latent processes: the R package lcmm

    Get PDF
    The R package lcmm provides a series of functions to estimate statistical models based on linear mixed model theory. It includes the estimation of mixed models and latent class mixed models for Gaussian longitudinal outcomes (hlme), curvilinear and ordinal univariate longitudinal outcomes (lcmm) and curvilinear multivariate outcomes (multlcmm), as well as joint latent class mixed models (Jointlcmm) for a (Gaussian or curvilinear) longitudinal outcome and a time-to-event that can be possibly left-truncated right-censored and defined in a competing setting. Maximum likelihood esimators are obtained using a modified Marquardt algorithm with strict convergence criteria based on the parameters and likelihood stability, and on the negativity of the second derivatives. The package also provides various post-fit functions including goodness-of-fit analyses, classification, plots, predicted trajectories, individual dynamic prediction of the event and predictive accuracy assessment. This paper constitutes a companion paper to the package by introducing each family of models, the estimation technique, some implementation details and giving examples through a dataset on cognitive aging

    The Multilevel Structures of NURBs and NURBlets on Intervals

    Get PDF
    This dissertation is concerned with the problem of constructing biorthogonal wavelets based on non-uniform rational cubic B-Splines on intervals. We call non-uniform rational B-Splines ``NURBs , and such biorthogonal wavelets ``NURBlets . Constructing NURBlets is useful in designing and representing an arbitrary shape of an object in the industry, especially when exactness of the shape is critical such as the shape of an aircraft. As we know presently most popular wavelet models in the industry are approximated at boundaries. In this dissertation a new model is presented that is well suited for generating arbitrary shapes in the industry with mathematical exactness throughout intervals; it fulfills interpolation at boundaries as well

    Extending the product portfolio with ‘devolved manufacturing’: Methodology and case studies

    Get PDF
    Current research by the developers of rapid prototyping systems is generally focused on improvements in cost, speed and materials to create truly economic and practical economic rapid manufacturing machines. In addition to being potentially smarter/faster/cheaper replacements for existing manufacturing technologies, the next generation of these machines will provide opportunities not only for the design and fabrication of products without traditional constraints, but also for organizing manufacturing activities in new, innovative and previously undreamt of ways. This paper outlines a novel devolved manufacturing (DM) ‘factory-less’ approach to e-manufacturing, which integrates Mass Customization (MC) concepts, Rapid Manufacturing (RM) technologies and the communication opportunities of the Internet/WWW, describes two case studies of different DM implementations and discusses the limitations and appropriateness of each, and finally, draws some conclusions about the technical, manufacturing and business challenges involved
    • …
    corecore