58,242 research outputs found

    Size-Dependent Tile Self-Assembly: Constant-Height Rectangles and Stability

    Full text link
    We introduce a new model of algorithmic tile self-assembly called size-dependent assembly. In previous models, supertiles are stable when the total strength of the bonds between any two halves exceeds some constant temperature. In this model, this constant temperature requirement is replaced by an nondecreasing temperature function τ:NN\tau : \mathbb{N} \rightarrow \mathbb{N} that depends on the size of the smaller of the two halves. This generalization allows supertiles to become unstable and break apart, and captures the increased forces that large structures may place on the bonds holding them together. We demonstrate the power of this model in two ways. First, we give fixed tile sets that assemble constant-height rectangles and squares of arbitrary input size given an appropriate temperature function. Second, we prove that deciding whether a supertile is stable is coNP-complete. Both results contrast with known results for fixed temperature.Comment: In proceedings of ISAAC 201

    Cerulean: A hybrid assembly using high throughput short and long reads

    Full text link
    Genome assembly using high throughput data with short reads, arguably, remains an unresolvable task in repetitive genomes, since when the length of a repeat exceeds the read length, it becomes difficult to unambiguously connect the flanking regions. The emergence of third generation sequencing (Pacific Biosciences) with long reads enables the opportunity to resolve complicated repeats that could not be resolved by the short read data. However, these long reads have high error rate and it is an uphill task to assemble the genome without using additional high quality short reads. Recently, Koren et al. 2012 proposed an approach to use high quality short reads data to correct these long reads and, thus, make the assembly from long reads possible. However, due to the large size of both dataset (short and long reads), error-correction of these long reads requires excessively high computational resources, even on small bacterial genomes. In this work, instead of error correction of long reads, we first assemble the short reads and later map these long reads on the assembly graph to resolve repeats. Contribution: We present a hybrid assembly approach that is both computationally effective and produces high quality assemblies. Our algorithm first operates with a simplified version of the assembly graph consisting only of long contigs and gradually improves the assembly by adding smaller contigs in each iteration. In contrast to the state-of-the-art long reads error correction technique, which requires high computational resources and long running time on a supercomputer even for bacterial genome datasets, our software can produce comparable assembly using only a standard desktop in a short running time.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square

    Full text link
    In this paper we define the Dupled abstract Tile Assembly Model (DaTAM), which is a slight extension to the abstract Tile Assembly Model (aTAM) that allows for not only the standard square tiles, but also "duple" tiles which are rectangles pre-formed by the joining of two square tiles. We show that the addition of duples allows for powerful behaviors of self-assembling systems at temperature 1, meaning systems which exclude the requirement of cooperative binding by tiles (i.e., the requirement that a tile must be able to bind to at least 2 tiles in an existing assembly if it is to attach). Cooperative binding is conjectured to be required in the standard aTAM for Turing universal computation and the efficient self-assembly of shapes, but we show that in the DaTAM these behaviors can in fact be exhibited at temperature 1. We then show that the DaTAM doesn't provide asymptotic improvements over the aTAM in its ability to efficiently build thin rectangles. Finally, we present a series of results which prove that the temperature-2 aTAM and temperature-1 DaTAM have mutually exclusive powers. That is, each is able to self-assemble shapes that the other can't, and each has systems which cannot be simulated by the other. Beyond being of purely theoretical interest, these results have practical motivation as duples have already proven to be useful in laboratory implementations of DNA-based tiles

    Self-Assembly of 4-sided Fractals in the Two-handed Tile Assembly Model

    Full text link
    We consider the self-assembly of fractals in one of the most well-studied models of tile based self-assembling systems known as the Two-handed Tile Assembly Model (2HAM). In particular, we focus our attention on a class of fractals called discrete self-similar fractals (a class of fractals that includes the discrete Sierpi\'nski carpet). We present a 2HAM system that finitely self-assembles the discrete Sierpi\'nski carpet with scale factor 1. Moreover, the 2HAM system that we give lends itself to being generalized and we describe how this system can be modified to obtain a 2HAM system that finitely self-assembles one of any fractal from an infinite set of fractals which we call 4-sided fractals. The 2HAM systems we give in this paper are the first examples of systems that finitely self-assemble discrete self-similar fractals at scale factor 1 in a purely growth model of self-assembly. Finally, we show that there exists a 3-sided fractal (which is not a tree fractal) that cannot be finitely self-assembled by any 2HAM system

    New Geometric Algorithms for Fully Connected Staged Self-Assembly

    Get PDF
    We consider staged self-assembly systems, in which square-shaped tiles can be added to bins in several stages. Within these bins, the tiles may connect to each other, depending on the glue types of their edges. Previous work by Demaine et al. showed that a relatively small number of tile types suffices to produce arbitrary shapes in this model. However, these constructions were only based on a spanning tree of the geometric shape, so they did not produce full connectivity of the underlying grid graph in the case of shapes with holes; designing fully connected assemblies with a polylogarithmic number of stages was left as a major open problem. We resolve this challenge by presenting new systems for staged assembly that produce fully connected polyominoes in O(log^2 n) stages, for various scale factors and temperature {\tau} = 2 as well as {\tau} = 1. Our constructions work even for shapes with holes and uses only a constant number of glues and tiles. Moreover, the underlying approach is more geometric in nature, implying that it promised to be more feasible for shapes with compact geometric description.Comment: 21 pages, 14 figures; full version of conference paper in DNA2

    Telescoper: de novo assembly of highly repetitive regions.

    Get PDF
    MotivationWith advances in sequencing technology, it has become faster and cheaper to obtain short-read data from which to assemble genomes. Although there has been considerable progress in the field of genome assembly, producing high-quality de novo assemblies from short-reads remains challenging, primarily because of the complex repeat structures found in the genomes of most higher organisms. The telomeric regions of many genomes are particularly difficult to assemble, though much could be gained from the study of these regions, as their evolution has not been fully characterized and they have been linked to aging.ResultsIn this article, we tackle the problem of assembling highly repetitive regions by developing a novel algorithm that iteratively extends long paths through a series of read-overlap graphs and evaluates them based on a statistical framework. Our algorithm, Telescoper, uses short- and long-insert libraries in an integrated way throughout the assembly process. Results on real and simulated data demonstrate that our approach can effectively resolve much of the complex repeat structures found in the telomeres of yeast genomes, especially when longer long-insert libraries are used.AvailabilityTelescoper is publicly available for download at sourceforge.net/p/[email protected] informationSupplementary data are available at Bioinformatics online
    corecore