16,742 research outputs found

    Sandwiching saturation number of fullerene graphs

    Full text link
    The saturation number of a graph GG is the cardinality of any smallest maximal matching of GG, and it is denoted by s(G)s(G). Fullerene graphs are cubic planar graphs with exactly twelve 5-faces; all the other faces are hexagons. They are used to capture the structure of carbon molecules. Here we show that the saturation number of fullerenes on nn vertices is essentially n/3n/3

    Online Multi-Coloring with Advice

    Full text link
    We consider the problem of online graph multi-coloring with advice. Multi-coloring is often used to model frequency allocation in cellular networks. We give several nearly tight upper and lower bounds for the most standard topologies of cellular networks, paths and hexagonal graphs. For the path, negative results trivially carry over to bipartite graphs, and our positive results are also valid for bipartite graphs. The advice given represents information that is likely to be available, studying for instance the data from earlier similar periods of time.Comment: IMADA-preprint-c

    Subdivision into i-packings and S-packing chromatic number of some lattices

    Get PDF
    An ii-packing in a graph GG is a set of vertices at pairwise distance greater than ii. For a nondecreasing sequence of integers S=(s_1,s_2,)S=(s\_{1},s\_{2},\ldots), the SS-packing chromatic number of a graph GG is the least integer kk such that there exists a coloring of GG into kk colors where each set of vertices colored ii, i=1,,ki=1,\ldots, k, is an s_is\_i-packing. This paper describes various subdivisions of an ii-packing into jj-packings (j\textgreater{}i) for the hexagonal, square and triangular lattices. These results allow us to bound the SS-packing chromatic number for these graphs, with more precise bounds and exact values for sequences S=(s_i,iN)S=(s\_{i}, i\in\mathbb{N}^{*}), s_i=d+(i1)/ns\_{i}=d+ \lfloor (i-1)/n \rfloor
    corecore