28,099 research outputs found

    N17 Modifies mutant Huntingtin nuclear pathogenesis and severity of disease in HD BAC transgenic mice.

    Get PDF
    The nucleus is a critical subcellular compartment for the pathogenesis of polyglutamine disorders, including Huntington's disease (HD). Recent studies suggest the first 17-amino-acid domain (N17) of mutant huntingtin (mHTT) mediates its nuclear exclusion in cultured cells. Here, we test whether N17 could be a molecular determinant of nuclear mHTT pathogenesis in vivo. BAC transgenic mice expressing mHTT lacking the N17 domain (BACHD-ΔN17) show dramatically accelerated mHTT pathology exclusively in the nucleus, which is associated with HD-like transcriptionopathy. Interestingly, BACHD-ΔN17 mice manifest more overt disease-like phenotypes than the original BACHD mice, including body weight loss, movement deficits, robust striatal neuron loss, and neuroinflammation. Mechanistically, N17 is necessary for nuclear exclusion of small mHTT fragments that are part of nuclear pathology in HD. Together, our study suggests that N17 modifies nuclear pathogenesis and disease severity in HD mice by regulating subcellular localization of known nuclear pathogenic mHTT species

    Defective axonal transport in motor neuron disease

    Get PDF
    Several recent studies have highlighted the role of axonal transport in the pathogenesis of motor neuron diseases. Mutations in genes that control microtubule regulation and dynamics have been shown to cause motor neuron degeneration in mice and in a form of human motor neuron disease. In addition, mutations in the molecular motors dynein and kinesins and several proteins associated with the membranes of intracellular vesicles that undergo transport cause motor neuron degeneration in humans and mice. Paradoxically, evidence from studies on the legs at odd angles (Loa) mouse and a transgenic mouse model for human motor neuron disease suggest that partial limitation of the function of dynein may in fact lead to improved axonal transport in the transgenic mouse, leading to delayed disease onset and increased life span

    From gene to therapy in spinal and bulbar muscular atrophy: Are we there yet?

    Get PDF
    Abnormal polyglutamine expansions in the androgen receptor (AR) cause a muscular condition, known as Kennedy's disease or spinal and bulbar muscular atrophy (SBMA). The disease is transmitted in an X-linked fashion and is clinically characterized by weakness, atrophy and fasciculations of the limb and bulbar muscles as a result of a toxic gain-of-function of the mutant protein. Notably, affected males also show signs of androgen insensitivity, such as gynaecomastia and reduced fertility. The characterization of the natural history of the disease, the increasing understanding of the mechanism of pathogenesis and the elucidation of the functions of normal and mutant AR have offered a momentum for developing a rational therapeutic strategy for this disease. In this special issue on androgens and AR functions, we will review the molecular, biochemical, and cellular mechanisms underlying the pathogenesis of SBMA. We will discuss recent advances on therapeutic approaches and opportunities for this yet incurable disease, ranging from androgen deprivation, to gene silencing, to an expanding repertoire of peripheral targets, including muscle. With the advancement of these strategies into the clinic, it can be reasonably anticipated that the landscape of treatment options for SBMA and other neuromuscular conditions will change rapidly in the near future

    Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins

    Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant No. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138. We also thank Mate Babić for help in preparation of schematics.Peer reviewedPublisher PD

    Pemilihan kerjaya di kalangan pelajar aliran perdagangan sekolah menengah teknik : satu kajian kes

    Get PDF
    This research is a survey to determine the career chosen of form four student in commerce streams. The important aspect of the career chosen has been divided into three, first is information about career, type of career and factor that most influence students in choosing a career. The study was conducted at Sekolah Menengah Teknik Kajang, Selangor Darul Ehsan. Thirty six form four students was chosen by using non-random sampling purpose method as respondent. All information was gather by using questionnaire. Data collected has been analyzed in form of frequency, percentage and mean. Results are performed in table and graph. The finding show that information about career have been improved in students career chosen and mass media is the main factor influencing students in choosing their career

    MAPping out distribution routes for kinesin couriers

    Get PDF
    In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarized, compartmentalized and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of subdomain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications (PTMs), tubulin GTPase activity and MT associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that – especially for axonal cargo – alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution
    corecore