298 research outputs found

    Early sensory attention and pupil size in cognitive control : an EEG approach

    Get PDF

    Rapid Brain Responses to Familiar vs. Unfamiliar Music – an EEG and Pupillometry study

    Get PDF
    Human listeners exhibit marked sensitivity to familiar music, perhaps most readily revealed by popular “name that tune” games, in which listeners often succeed in recognizing a familiar song based on extremely brief presentation. In this work, we used electroencephalography (EEG) and pupillometry to reveal the temporal signatures of the brain processes that allow differentiation between a familiar, well liked, and unfamiliar piece of music. In contrast to previous work, which has quantified gradual changes in pupil diameter (the so-called “pupil dilation response”), here we focus on the occurrence of pupil dilation events. This approach is substantially more sensitive in the temporal domain and allowed us to tap early activity with the putative salience network. Participants (N = 10) passively listened to snippets (750 ms) of a familiar, personally relevant and, an acoustically matched, unfamiliar song, presented in random order. A group of control participants (N = 12), who were unfamiliar with all of the songs, was also tested. We reveal a rapid differentiation between snippets from familiar and unfamiliar songs: Pupil responses showed greater dilation rate to familiar music from 100–300 ms post-stimulus-onset, consistent with a faster activation of the autonomic salience network. Brain responses measured with EEG showed a later differentiation between familiar and unfamiliar music from 350 ms post onset. Remarkably, the cluster pattern identified in the EEG response is very similar to that commonly found in the classic old/new memory retrieval paradigms, suggesting that the recognition of brief, randomly presented, music snippets, draws on similar processes

    Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans

    Get PDF
    The locus coeruleus (LC), the major noradrenergic nucleus of the brain, gives rise to fibres innervating most structures of the neuraxis. Recent advances in neuroscience have helped to unravel the neuronal circuitry controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. Alterations in LC activity due to physiological or pharmacological manipulations or pathological processes can lead to distinct patterns of change in arousal and autonomic function. Physiological manipulations considered here include the presentation of noxious or anxiety-provoking stimuli and extremes in ambient temperature. The modification of LC-controlled functions by drug administration is discussed in detail, including drugs which directly modify the activity of LC neurones (e.g., via autoreceptors, storage, reuptake) or have an indirect effect through modulating excitatory or inhibitory inputs. The early vulnerability of the LC to the ageing process and to neurodegenerative disease (Parkinson’s and Alzheimer’s diseases) is of considerable clinical significance. In general, physiological manipulations and the administration of stimulant drugs, α2-adrenoceptor antagonists and noradrenaline uptake inhibitors increase LC activity and thus cause heightened arousal and activation of the sympathetic nervous system. In contrast, the administration of sedative drugs, including α2-adrenoceptor agonists, and pathological changes in LC function in neurodegenerative disorders and ageing reduce LC activity and result in sedation and activation of the parasympathetic nervous system

    Alpha-amylase, cortisol, and pupillary responses to social and non-social dynamic scenes in young children with autism spectrum disorder

    Get PDF
    The symptoms of Autism Spectrum Disorder (ASD) may manifest from deficits in attention/arousal; previous studies found altered autonomic and attentional responses in ASD. We found a larger tonic pupil size (Anderson & Colombo, 2009) and altered phasic pupillary responses to human faces (Anderson, Colombo, & Shaddy, 2006) in 2-5 year old children with ASD. Children (20 - 72 months of age) with ASD (n = 12), Down syndrome (DS; n = 9), and typical development (TD; n = 11) were presented with a social and a non-social video clip to examine pupil, salivary, and visual scanning measures. The ASD group had (a) a larger tonic pupil size, (b) lower tonic levels of AA, significantly related to tonic pupil size, and (c) increased phasic pupil responses to the social stimulus than controls. These findings provide replication and extension of our previous investigations; underlying pathology and early identification measures in ASD are discussed

    General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis

    Get PDF
    Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. How anesthetic drugs create the state of general anesthesia is considered a major mystery of modern medicine. Unconsciousness, induced by altered arousal and/or cognition, is perhaps the most fascinating behavioral state of general anesthesia. We perform a systems neuroscience analysis of the altered arousal states induced by five classes of intravenous anesthetics by relating their behavioral and physiological features to the molecular targets and neural circuits at which these drugs are purported to act. The altered states of arousal are sedation-unconsciousness, sedation-analgesia, dissociative anesthesia, pharmacologic non-REM sleep, and neuroleptic anesthesia. Each altered arousal state results from the anesthetic drugs acting at multiple targets in the central nervous system. Our analysis shows that general anesthesia is less mysterious than currently believed.Massachusetts General Hospital. Dept. of Anesthesia and Critical CareNational Institutes of Health (U.S.) (Director's Pioneer Award DP10D003646)National Institutes of Health (U.S.) (New Innovator Award DP2OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Training Program in Sleep, Circadian and Respiratory Neurobiology HL07901

    The Role of The Locus Coeruleus Noradrenergic System in Tracking the Statistics of Rapid Sound Sequences

    Get PDF
    The sensory world is full of uncertainty; most perception-relevant statistics are highly dynamic, featuring frequently-changing patterns. Rapid adaptation to the everchanging world requires brain sensitivity to environmental changes and resetting of functional neural networks as needed. Norepinephrine (NE) is proposed to mediate this process by initiating functional resetting (Dayan and Yu, 2006; Sara and Bouret, 2012) via the Locus Coeruleus (LC)-NE system. This doctoral thesis employs pupil diameter measurements – a reliable indicator of NE neural activity in the LC (Aston-Jones and Cohen, 2005; Joshi et al. 2016). Human participants listened to sequences of adjoined 50ms tone-pips (adapted from Barascud et al., 2016) containing transitions from random to regular frequency patterns and vice-versa. Participants were instructed to detect occasionally inserted silent gaps, ensuring attention to the auditory stream, not the transition itself. Although both transitions (regular-to-random and random-to-regular) are clearly detectable behaviourally and evoke strong MEG (Barascud et al., 2016), only violations of regularity (prediction errors) appear to elicit pupil responses. Noteworthily, this response is driven by pattern changes and not merely deviant detection. However, stimuli containing pattern emergences (precision increase) evoke no measurable pupil response; this is not due to pre-transition pupillary saturation, as transitions from random patterns to repeating single tones (random-to-repeating) evoke transient pupil dilation. Only when subjects actively reported changes in button-press did random-to-regular transitions evoke pupil dilations. Investigating the effect of task on evoked pupil responses found no response if subjects were not continuously tracking the sequences, e.g. with attention directed to visual or tactile stimuli. Multiple self-replications of these findings provide robust evidence that NE release acts as an automatic switch, resetting the brain’s internal model of the sensory environment and demonstrating that the unexpected uncertainty signalling process operates over much faster timescales than previously known, implicating NE in the fundamental bases of perception

    Enhancing User Experience in Next Generation Mobile Devices Using Eye Tracking as a Biometric Sensor

    Get PDF
    corecore