814 research outputs found

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Neighbour transitivity on codes in Hamming graphs

    Full text link
    We consider a \emph{code} to be a subset of the vertex set of a \emph{Hamming graph}. In this setting a \emph{neighbour} of the code is a vertex which differs in exactly one entry from some codeword. This paper examines codes with the property that some group of automorphisms acts transitively on the \emph{set of neighbours} of the code. We call these codes \emph{neighbour transitive}. We obtain sufficient conditions for a neighbour transitive group to fix the code setwise. Moreover, we construct an infinite family of neighbour transitive codes, with \emph{minimum distance} δ=4\delta=4, where this is not the case. That is to say, knowledge of even the complete set of code neighbours does not determine the code

    On large bipartite graphs of diameter 3

    Get PDF
    We consider the bipartite version of the {\it degree/diameter problem}, namely, given natural numbers d≥2d\ge2 and D≥2D\ge2, find the maximum number Nb(d,D)\N^b(d,D) of vertices in a bipartite graph of maximum degree dd and diameter DD. In this context, the bipartite Moore bound \M^b(d,D) represents a general upper bound for Nb(d,D)\N^b(d,D). Bipartite graphs of order \M^b(d,D) are very rare, and determining Nb(d,D)\N^b(d,D) still remains an open problem for most (d,D)(d,D) pairs. This paper is a follow-up to our earlier paper \cite{FPV12}, where a study on bipartite (d,D,−4)(d,D,-4)-graphs (that is, bipartite graphs of order \M^b(d,D)-4) was carried out. Here we first present some structural properties of bipartite (d,3,−4)(d,3,-4)-graphs, and later prove there are no bipartite (7,3,−4)(7,3,-4)-graphs. This result implies that the known bipartite (7,3,−6)(7,3,-6)-graph is optimal, and therefore Nb(7,3)=80\N^b(7,3)=80. Our approach also bears a proof of the uniqueness of the known bipartite (5,3,−4)(5,3,-4)-graph, and the non-existence of bipartite (6,3,−4)(6,3,-4)-graphs. In addition, we discover three new largest known bipartite (and also vertex-transitive) graphs of degree 11, diameter 3 and order 190, result which improves by 4 vertices the previous lower bound for Nb(11,3)\N^b(11,3)
    • …
    corecore