723 research outputs found

    On the linear convergence of distributed Nash equilibrium seeking for multi-cluster games under partial-decision information

    Full text link
    This paper considers the distributed strategy design for Nash equilibrium (NE) seeking in multi-cluster games under a partial-decision information scenario. In the considered game, there are multiple clusters and each cluster consists of a group of agents. A cluster is viewed as a virtual noncooperative player that aims to minimize its local payoff function and the agents in a cluster are the actual players that cooperate within the cluster to optimize the payoff function of the cluster through communication via a connected graph. In our setting, agents have only partial-decision information, that is, they only know local information and cannot have full access to opponents' decisions. To solve the NE seeking problem of this formulated game, a discrete-time distributed algorithm, called distributed gradient tracking algorithm (DGT), is devised based on the inter- and intra-communication of clusters. In the designed algorithm, each agent is equipped with strategy variables including its own strategy and estimates of other clusters' strategies. With the help of a weighted Fronbenius norm and a weighted Euclidean norm, theoretical analysis is presented to rigorously show the linear convergence of the algorithm. Finally, a numerical example is given to illustrate the proposed algorithm

    A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games

    Full text link
    We address the generalized aggregative equilibrium seeking problem for noncooperative agents playing average aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized aggregative equilibria of the game as the zeros of a monotone set-valued operator. Then, we massage the Douglas-Rachford splitting to solve the monotone inclusion problem and derive a single layer, semi-decentralized algorithm whose global convergence is guaranteed under mild assumptions. The potential of the proposed Douglas-Rachford algorithm is shown on a simplified resource allocation game, where we observe faster convergence with respect to forward-backward algorithms.Comment: arXiv admin note: text overlap with arXiv:1803.1044

    Probably Approximately Correct Nash Equilibrium Learning

    Full text link
    We consider a multi-agent noncooperative game with agents' objective functions being affected by uncertainty. Following a data driven paradigm, we represent uncertainty by means of scenarios and seek a robust Nash equilibrium solution. We treat the Nash equilibrium computation problem within the realm of probably approximately correct (PAC) learning. Building upon recent developments in scenario-based optimization, we accompany the computed Nash equilibrium with a priori and a posteriori probabilistic robustness certificates, providing confidence that the computed equilibrium remains unaffected (in probabilistic terms) when a new uncertainty realization is encountered. For a wide class of games, we also show that the computation of the so called compression set - a key concept in scenario-based optimization - can be directly obtained as a byproduct of the proposed solution methodology. Finally, we illustrate how to overcome differentiability issues, arising due to the introduction of scenarios, and compute a Nash equilibrium solution in a decentralized manner. We demonstrate the efficacy of the proposed approach on an electric vehicle charging control problem.Comment: Preprint submitted to IEEE Transactions on Automatic Contro

    Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-Part I: Nash Equilibria

    Full text link
    In this two-parts paper we propose a decentralized strategy, based on a game-theoretic formulation, to find out the optimal precoding/multiplexing matrices for a multipoint-to-multipoint communication system composed of a set of wideband links sharing the same physical resources, i.e., time and bandwidth. We assume, as optimality criterion, the achievement of a Nash equilibrium and consider two alternative optimization problems: 1) the competitive maximization of mutual information on each link, given constraints on the transmit power and on the spectral mask imposed by the radio spectrum regulatory bodies; and 2) the competitive maximization of the transmission rate, using finite order constellations, under the same constraints as above, plus a constraint on the average error probability. In Part I of the paper, we start by showing that the solution set of both noncooperative games is always nonempty and contains only pure strategies. Then, we prove that the optimal precoding/multiplexing scheme for both games leads to a channel diagonalizing structure, so that both matrix-valued problems can be recast in a simpler unified vector power control game, with no performance penalty. Thus, we study this simpler game and derive sufficient conditions ensuring the uniqueness of the Nash equilibrium. Interestingly, although derived under stronger constraints, incorporating for example spectral mask constraints, our uniqueness conditions have broader validity than previously known conditions. Finally, we assess the goodness of the proposed decentralized strategy by comparing its performance with the performance of a Pareto-optimal centralized scheme. To reach the Nash equilibria of the game, in Part II, we propose alternative distributed algorithms, along with their convergence conditions.Comment: Paper submitted to IEEE Transactions on Signal Processing, September 22, 2005. Revised March 14, 2007. Accepted June 5, 2007. To be published on IEEE Transactions on Signal Processing, 2007. To appear on IEEE Transactions on Signal Processing, 200
    • …
    corecore