3,483 research outputs found

    The stationary measure for diagonal quantum walk with one defect

    Get PDF
    This study is motivated by the previous work [14]. We treat 3 types of the one-dimensional quantum walks (QWs), whose time evolutions are described by diagonal unitary matrix, and diagonal unitary matrices with one defect. In this paper, we call the QW defined by diagonal unitary matrices, "the diagonal QW", and we consider the stationary distributions of generally 2-state diagonal QW with one defect, 3-state space-homogeneous diagonal QW, and 3-state diagonal QW with one defect. One of the purposes of our study is to characterize the QWs by the stationary measure, which may lead to answer the basic and natural question, "What the stationary measure is for one-dimensional QWs ?". In order to analyze the stationary distribution, we focus on the corresponding eigenvalue problems and the definition of the stationary measure.Comment: 10 page

    Stationary measure for two-state space-inhomogeneous quantum walk in one dimension

    Full text link
    We consider the two-state space-inhomogeneous coined quantum walk (QW) in one dimension. For a general setting, we obtain the stationary measure of the QW by solving the eigenvalue problem. As a corollary, stationary measures of the multi-defect model and space-homogeneous QW are derived. The former is a generalization of the previous works on one-defect model and the latter is a generalization of the result given by Konno and Takei (2015).Comment: 15 pages, revised version, Yokohama Mathematical Journal (in press

    Braiding Interactions in Anyonic Quantum Walks

    Full text link
    The anyonic quantum walk is a dynamical model describing a single anyon propagating along a chain of stationary anyons and interacting via mutual braiding statistics. We review the recent results on the effects of braiding statistics in anyonic quantum walks in quasi-one dimensional ladder geometries. For anyons which correspond to spin-1/2 irreps of the quantum groups SU(2)kSU(2)_k, the non-Abelian species (1<k<)(1<k<\infty) gives rise to entanglement between the walker and topological degrees of freedom which is quantified by quantum link invariants over the trajectories of the walk. The decoherence is strong enough to reduce the walk on the infinite ladder to classical like behaviour. We also present numerical results on mixing times of SU(2)2SU(2)_2 or Ising model anyon walks on cyclic graphs. Finally, the possible experimental simulation of the anyonic quantum walk in Fractional Quantum Hall systems is discussed.Comment: 13 pages, submitted to Proceedings of the 2nd International Conference on Theoretical Physics (ICTP 2012

    Fractal Noise in Quantum Ballistic and Diffusive Lattice Systems

    Full text link
    We demonstrate fractal noise in the quantum evolution of wave packets moving either ballistically or diffusively in periodic and quasiperiodic tight-binding lattices, respectively. For the ballistic case with various initial superpositions we obtain a space-time self-affine fractal Ψ(x,t)\Psi(x,t) which verify the predictions by Berry for "a particle in a box", in addition to quantum revivals. For the diffusive case self-similar fractal evolution is also obtained. These universal fractal features of quantum theory might be useful in the field of quantum information, for creating efficient quantum algorithms, and can possibly be detectable in scattering from nanostructures.Comment: 9 pages, 8 postscript figure
    corecore