8,325 research outputs found

    Galois Unitaries, Mutually Unbiased Bases, and MUB-balanced states

    Full text link
    A Galois unitary is a generalization of the notion of anti-unitary operators. They act only on those vectors in Hilbert space whose entries belong to some chosen number field. For Mutually Unbiased Bases the relevant number field is a cyclotomic field. By including Galois unitaries we are able to remove a mismatch between the finite projective group acting on the bases on the one hand, and the set of those permutations of the bases that can be implemented as transformations in Hilbert space on the other hand. In particular we show that there exist transformations that cycle through all the bases in every dimension which is an odd power of an odd prime. (For even primes unitary MUB-cyclers exist.) These transformations have eigenvectors, which are MUB-balanced states (i.e. rotationally symmetric states in the original terminology of Wootters and Sussman) if and only if d = 3 modulo 4. We conjecture that this construction yields all such states in odd prime power dimension.Comment: 32 pages, 2 figures, AMS Latex. Version 2: minor improvements plus a few additional reference

    Lattice-like operations and isotone projection sets

    Full text link
    By using some lattice-like operations which constitute extensions of ones introduced by M. S. Gowda, R. Sznajder and J. Tao for self-dual cones, a new perspective is gained on the subject of isotonicity of the metric projection onto the closed convex sets. The results of this paper are wide range generalizations of some results of the authors obtained for self-dual cones. The aim of the subsequent investigations is to put into evidence some closed convex sets for which the metric projection is isotonic with respect the order relation which give rise to the above mentioned lattice-like operations. The topic is related to variational inequalities where the isotonicity of the metric projection is an important technical tool. For Euclidean sublattices this approach was considered by G. Isac and respectively by H. Nishimura and E. A. Ok.Comment: Proofs of Theorem 1 and Corollary 4 have been corrected. arXiv admin note: substantial text overlap with arXiv:1210.232

    Bilinearity rank of the cone of positive polynomials and related cones

    Get PDF
    For a proper cone K ⊂ Rn and its dual cone K the complementary slackness condition xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K^* }. When K is a symmetric cone, this manifold can be described by a set of n bilinear equalities. When K is a symmetric cone, this fact translates to a set of n linearly independent bilinear identities (optimality conditions) satisfied by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones, therefore it is natural to look for similar optimality conditions for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for the cone, and describe a linear algebraic technique to bound this quantity. We examine several well-known cones, in particular the cone of positive polynomials P2n+1 and its dual, the closure of the moment cone M2n+1, and compute their bilinearity ranks. We show that there are exactly four linearly independent bilinear identities which hold for all (x,s) ∈ C(P2n+1), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials

    Bilinearity rank of the cone of positive polynomials and related cones

    Get PDF
    For a proper cone K ⊂ Rn and its dual cone K the complementary slackness condition xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K^* }. When K is a symmetric cone, this manifold can be described by a set of n bilinear equalities. When K is a symmetric cone, this fact translates to a set of n linearly independent bilinear identities (optimality conditions) satisfied by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones, therefore it is natural to look for similar optimality conditions for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for the cone, and describe a linear algebraic technique to bound this quantity. We examine several well-known cones, in particular the cone of positive polynomials P2n+1 and its dual, the closure of the moment cone M2n+1, and compute their bilinearity ranks. We show that there are exactly four linearly independent bilinear identities which hold for all (x,s) ∈ C(P2n+1), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials

    Linear complementarity systems : a study in hybrid dynamics

    Get PDF

    GIT Constructions of Moduli Spaces of Stable Curves and Maps

    Full text link
    This largely expository paper first gives an introduction to Hilbert stability and its use in Gieseker's GIT construction of M‾g\overline{M}_g. Then I review recent work in this area--variants for unpointed curves that arise in Hassett's log minimal model program, starting with Schubert's moduli space of pseudostable curves, and constructions for weighted pointed stable curves and for pointed stable maps due to Swinarski and to Baldwin and Swinarski respectively. The focus is on the steps at which new ideas are needed. Finally, I list open problems in the area, particularly some arising in the log minimal model program that seem inaccessible to current techniques.Comment: 46 pages, 3 figures, written for Surveys in Differential Geometr

    Quantum Causality, Stochastics, Trajectories and Information

    Full text link
    A history of the discovery of quantum mechanics and paradoxes of its interpretation is reconsidered from the modern point of view of quantum stochastics and information. It is argued that in the orthodox quantum mechanics there is no place for quantum phenomenology such as events. The development of quantum measurement theory, initiated by von Neumann, and Bell's conceptual critics of hidden variable theories indicated a possibility for resolution of this crisis. This can be done by divorcing the algebra of the dynamical generators and an extended algebra of the potential (quantum) and the actual (classical) observables. The latter, called beables, form the center of the algebra of all observables, as the only visible (macroscopic) observables must be compatible with any hidden (microscopic) observable. It is shown that within this approach quantum causality can be rehabilitated within event enhanced quantum mechanics (eventum mechanics) in the form of a superselection rule for compatibility of the consistent histories with the statistically predictable future. The application of this rule in the form of the nondemolition principle leads to the statistical inference of the von Neumann projection postulate, and also to the more general quantum information dynamics for instantaneous events, spontaneous localizations (i.e. quantum jumps), and state diffusions (i.e. continuous trajectories). This gives a dynamical solution, in the form of a Dirac boundary value problem and reduced filtering equations, of the notorious decoherence and measurement problems which was tackled unsuccessfully by many famous mathematicians and physicists starting with von Neumann, Schroedinger and Bohr.Comment: 67 pages, 120 references. In celebration of the 100th anniversary of the discovery of quant
    • …
    corecore