18,329 research outputs found

    Computation with Advice

    Get PDF
    Computation with advice is suggested as generalization of both computation with discrete advice and Type-2 Nondeterminism. Several embodiments of the generic concept are discussed, and the close connection to Weihrauch reducibility is pointed out. As a novel concept, computability with random advice is studied; which corresponds to correct solutions being guessable with positive probability. In the framework of computation with advice, it is possible to define computational complexity for certain concepts of hypercomputation. Finally, some examples are given which illuminate the interplay of uniform and non-uniform techniques in order to investigate both computability with advice and the Weihrauch lattice

    A topological view on algebraic computation models

    Get PDF
    We investigate the topological aspects of some algebraic computation models, in particular the BSS-model. Our results can be seen as bounds on how different BSS-computability and computability in the sense of computable analysis can be. The framework for this is Weihrauch reducibility. As a consequence of our characterizations, we establish that the solvability complexity index is (mostly) independent of the computational model, and that there thus is common ground in the study of non-computability between the BSS and TTE setting

    The physical Church-Turing thesis and the principles of quantum theory

    Full text link
    Notoriously, quantum computation shatters complexity theory, but is innocuous to computability theory. Yet several works have shown how quantum theory as it stands could breach the physical Church-Turing thesis. We draw a clear line as to when this is the case, in a way that is inspired by Gandy. Gandy formulates postulates about physics, such as homogeneity of space and time, bounded density and velocity of information --- and proves that the physical Church-Turing thesis is a consequence of these postulates. We provide a quantum version of the theorem. Thus this approach exhibits a formal non-trivial interplay between theoretical physics symmetries and computability assumptions.Comment: 14 pages, LaTe

    Monte Carlo Computability

    Get PDF
    We introduce Monte Carlo computability as a probabilistic concept of computability on infinite objects and prove that Monte Carlo computable functions are closed under composition. We then mutually separate the following classes of functions from each other: the class of multi-valued functions that are non-deterministically computable, that of Las Vegas computable functions, and that of Monte Carlo computable functions. We give natural examples of computational problems witnessing these separations. As a specific problem which is Monte Carlo computable but neither Las Vegas computable nor non-deterministically computable, we study the problem of sorting infinite sequences that was recently introduced by Neumann and Pauly. Their results allow us to draw conclusions about the relation between algebraic models and Monte Carlo computability
    corecore