2,990 research outputs found

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    1994 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center

    Comparison of Image Processing Techniques Using Random Noise Radar

    Get PDF
    Radar imaging is a tool used by our military to provide information to enhance situational awareness for both war fighters on the front lines and military leaders planning and forming strategies from afar. Noise radar technology is especially exciting as it has properties of covertness as well as the ability to see through walls, foliage, and other types of cover. In this thesis, AFIT\u27s NoNet was used to generate images utilizing a random noise radar waveform as the transmission signal. The NoNet was arranged in four configurations: arc, line, cluster, and surround. Images were formed using three algorithms: multilateration and the SAR imaging techniques, convolution backprojection, and polar format algorithm. Each configuration was assessed based on image quality, in terms of its resolution, and computational complexity, in terms of its execution time. Experiments revealed tradeoffs between computational complexity and achieving fine resolutions. Depending on image size, the multilateration algorithm was approximately 6 to 35 faster than polar format and 16 to 26 times faster than convolution backprojection. Backprojection yielded images with resolutions up to approximately 11 times finer in range and 18 times finer in cross-range for the surround configuration, over multilateration images. Pixel size in polar format images made comparisons of resolution unusable. This thesis provides information on the performance of imaging algorithms given a configuration of nodes. The information will provide groundwork for future use of the AFIT NoNet as a covertly operating imaging radar in dynamic applications

    SARCASTIC v2.0 - High-performance SAR simulation for next-generation ATR systems

    Get PDF
    Synthetic aperture radar has been a mainstay of the remote sensing field for many years, with a wide range of applications across both civilian and military contexts. However, the lack of openly available datasets of comparable size and quality to those available for optical imagery has severely hampered work on open problems such as automatic target recognition, image understanding and inverse modelling. This paper presents a simulation and analysis framework based on the upgraded SARCASTIC v2.0 engine, along with a selection of case studies demonstrating its application to well-known and novel problems. In particular, we demonstrate that SARCASTIC v2.0 is capable of supporting complex phase-dependent processing such as interferometric height extraction whilst maintaining near-realtime performance on complex scenes

    C-band Scatterometers and Their Applications

    Get PDF

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Convex Model-Based Synthetic Aperture Radar Processing

    Get PDF
    The use of radar often conjures up images of small blobs on a screen. But current synthetic aperture radar (SAR) systems are able to generate near-optical quality images with amazing benefits compared to optical sensors. These SAR sensors work in all weather conditions, day or night, and provide many advanced capabilities to detect and identify targets of interest. These amazing abilities have made SAR sensors a work-horse in remote sensing, and military applications. SAR sensors are ranging instruments that operate in a 3D environment, but unfortunately the results and interpretation of SAR images have traditionally been done in 2D. Three-dimensional SAR images could provide improved target detection and identification along with improved scene interpretability. As technology has increased, particularly regarding our ability to solve difficult optimization problems, the 3D SAR reconstruction problem has gathered more interest. This dissertation provides the SAR and mathematical background required to pose a SAR 3D reconstruction problem. The problem is posed in a way that allows prior knowledge about the target of interest to be integrated into the optimization problem when known. The developed model is demonstrated on simulated data initially in order to illustrate critical concepts in the development. Then once comprehension is achieved the processing is applied to actual SAR data. The 3D results are contrasted against the current gold- standard. The results are shown as 3D images demonstrating the improvement regarding scene interpretability that this approach provides

    Interferometric synthetic aperture sonar system supported by satellite

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Vegetation Detection and Classification for Power Line Monitoring

    Get PDF
    Electrical network maintenance inspections must be regularly executed, to provide a continuous distribution of electricity. In forested countries, the electrical network is mostly located within the forest. For this reason, during these inspections, it is also necessary to assure that vegetation growing close to the power line does not potentially endanger it, provoking forest fires or power outages. Several remote sensing techniques have been studied in the last years to replace the labor-intensive and costly traditional approaches, be it field based or airborne surveillance. Besides the previously mentioned disadvantages, these approaches are also prone to error, since they are dependent of a human operator’s interpretation. In recent years, Unmanned Aerial Vehicle (UAV) platform applicability for this purpose has been under debate, due to its flexibility and potential for customisation, as well as the fact it can fly close to the power lines. The present study proposes a vegetation management and power line monitoring method, using a UAV platform. This method starts with the collection of point cloud data in a forest environment composed of power line structures and vegetation growing close to it. Following this process, multiple steps are taken, including: detection of objects in the working environment; classification of said objects into their respective class labels using a feature-based classifier, either vegetation or power line structures; optimisation of the classification results using point cloud filtering or segmentation algorithms. The method is tested using both synthetic and real data of forested areas containing power line structures. The Overall Accuracy of the classification process is about 87% and 97-99% for synthetic and real data, respectively. After the optimisation process, these values were refined to 92% for synthetic data and nearly 100% for real data. A detailed comparison and discussion of results is presented, providing the most important evaluation metrics and a visual representations of the attained results.Manutenções regulares da rede elétrica devem ser realizadas de forma a assegurar uma distribuição contínua de eletricidade. Em países com elevada densidade florestal, a rede elétrica encontra-se localizada maioritariamente no interior das florestas. Por isso, durante estas inspeções, é necessário assegurar também que a vegetação próxima da rede elétrica não a coloca em risco, provocando incêndios ou falhas elétricas. Diversas técnicas de deteção remota foram estudadas nos últimos anos para substituir as tradicionais abordagens dispendiosas com mão-de-obra intensiva, sejam elas através de vigilância terrestre ou aérea. Além das desvantagens mencionadas anteriormente, estas abordagens estão também sujeitas a erros, pois estão dependentes da interpretação de um operador humano. Recentemente, a aplicabilidade de plataformas com Unmanned Aerial Vehicles (UAV) tem sido debatida, devido à sua flexibilidade e potencial personalização, assim como o facto de conseguirem voar mais próximas das linhas elétricas. O presente estudo propõe um método para a gestão da vegetação e monitorização da rede elétrica, utilizando uma plataforma UAV. Este método começa pela recolha de dados point cloud num ambiente florestal composto por estruturas da rede elétrica e vegetação em crescimento próximo da mesma. Em seguida,múltiplos passos são seguidos, incluindo: deteção de objetos no ambiente; classificação destes objetos com as respetivas etiquetas de classe através de um classificador baseado em features, vegetação ou estruturas da rede elétrica; otimização dos resultados da classificação utilizando algoritmos de filtragem ou segmentação de point cloud. Este método é testado usando dados sintéticos e reais de áreas florestais com estruturas elétricas. A exatidão do processo de classificação é cerca de 87% e 97-99% para os dados sintéticos e reais, respetivamente. Após o processo de otimização, estes valores aumentam para 92% para os dados sintéticos e cerca de 100% para os dados reais. Uma comparação e discussão de resultados é apresentada, fornecendo as métricas de avaliação mais importantes e uma representação visual dos resultados obtidos

    Microwave Imaging to Improve Breast Cancer Diagnosis

    Get PDF
    Breast cancer is the most prevalent type of cancer worldwide. The correct diagnosis of Axillary Lymph Nodes (ALNs) is important for an accurate staging of breast cancer. The performance of current imaging modalities for both breast cancer detection and staging is still unsatisfactory. Microwave Imaging (MWI) has been studied to aid breast cancer diagnosis. This thesis addresses several novel aspects of the development of air-operated MWI systems for both breast cancer detection and staging. Firstly, refraction effects in air-operated setups are evaluated to understand whether refraction calculation should be included in image reconstruction algorithms. Then, the research completed towards the development of a MWI system to detect the ALNs is presented. Anthropomorphic numerical phantoms of the axillary region are created, and the dielectric properties of ALNs are estimated from Magnetic Resonance Imaging exams. The first pre-clinical MWI setup tailored to detect ALNs is numerically and experimentally tested. To complement MWI results, the feasibility of using machine learning algorithms to classify healthy and metastasised ALNs using microwave signals is analysed. Finally, an additional study towards breast cancer detection is presented by proposing a prototype which uses a focal system to focus the energy into the breast and decrease the coupling between antennas. The results show refraction calculation may be neglected in low to moderate permittivity media. Moreover, MWI has the potential as an imaging technique to assess ALN diagnosis as estimation of dielectric properties indicate there is sufficient contrast between healthy and metastasised ALNs, and the imaging results obtained in this thesis are promising for ALN detection. The performance of classification models shows these models may potentially give complementary information to imaging results. The proposed breast imaging prototype also shows promising results for breast cancer detection
    corecore