10 research outputs found

    The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications

    Get PDF
    The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou Navigation Satellite System (BDS) and the US Global Positioning System (GPS). So far, the GNOS measurements and atmospheric and ionospheric data products have been validated and evaluated and then been used for atmosphere- and ionosphere-related scientific applications.This paper reviews the FY-3C GNOS instrument, RO data processing, data quality evaluation, and preliminary research applications according to the state-of-the-art status of the FY-3C GNOS mission and related publications. The reviewed data validation and application results demonstrate that the FY-3C GNOS mission can provide accurate and precise atmospheric and ionospheric GNSS (i.e., GPS and BDS) RO profiles for numerical weather prediction (NWP), global climate monitoring (GCM), and space weather research (SWR). The performance of the FY-3C GNOS product quality evaluation and scientific applications establishes confidence that the GNOS data from the series of FY-3 satellites will provide important contributions to NWP, GCM, and SWR scientific communities.</p

    Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales

    Get PDF
    While contemporary Numerical Weather Prediction models represent the large-scale structure of moist atmospheric processes reasonably well, they often struggle to maintain accurate forecasts of small-scale features such as convective rainfall. Even though high-resolution models resolve more of the flow, and are therefore arguably more accurate, moist convective flow becomes increasingly nonlinear and dynamically unstable. Importantly, the models’ initial conditions are typically sub-optimal, leaving scope to improve the accuracy of forecasts with improved data assimilation. To address issues regarding the use of atmospheric water-related observations – especially at convective scales (also known as storm scales) – this paper discusses the observation and assimilation of water- related quantities. Special emphasis is placed on background error statistics for variational and hybrid methods which need special attention for water variables. The challenges of convective-scale data assimilation of atmospheric water information are discussed, which are more difficult to tackle than at larger scales. Some of the most important challenges include the greater degree of inhomogeneity and lower degree of smoothness of the flow, the high volume of water-related observations (e.g. from radar, microwave, and infrared instruments), the need to analyse a range of hydrometeors, the increasing importance of position errors in forecasts, the greater sophistication of forward models to allow use of indirect observations (e.g. cloud and precipitation affected observations), the need to account for the flow-dependent multivariate ‘balance’ between atmospheric water and both dynamical and mass fields, and the inherent non-Gaussian nature of atmospheric water variables

    Observation and integrated Earth-system science: a roadmap for 2016–2025

    Get PDF
    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation

    A selective list of acronyms and abbreviations

    Get PDF
    A glossary of acronyms, abbreviations, initials, code words, and phrases used at the John F. Kennedy Space Center is presented. The revision contains more than 12,100 entries

    Globalance towards a new world order : ethics matters and motivates : handbook with 250 graphs

    Get PDF
    2nd enlarged edition. Prefaces Mariana Bozesan, Liu Baocheng, Ernst Ulrich von Weizsäcker.First published 2020 under the title: Globalance : ethics handbook for a balanced world post-covid

    Bibliography of Lewis Research Center technical publications announced in 1986

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1986. All the publications were announced in the 1986 issues of Scientific and Technical Aerospace Reports (STAR) and/or International Aerospace Abstracts (IAA). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Radiation protection programme. Progress report 1987. EUR 11464 DE/EN/FR

    Get PDF

    Sugarcane : research towards efficient and sustainable production

    Get PDF
    corecore