134 research outputs found

    Constructive solution methodologies to the capacitated newsvendor problem and surrogate extension

    Get PDF
    The newsvendor problem is a single-period stochastic model used to determine the order quantity of perishable product that maximizes/minimizes the profit/cost of the vendor under uncertain demand. The goal is to fmd an initial order quantity that can offset the impact of backlog or shortage caused by mismatch between the procurement amount and uncertain demand. If there are multiple products and substitution between them is feasible, overstocking and understocking can be further reduced and hence, the vendor\u27s overall profit is improved compared to the standard problem. When there are one or more resource constraints, such as budget, volume or weight, it becomes a constrained newsvendor problem. In the past few decades, many researchers have proposed solution methods to solve the newsvendor problem. The literature is first reviewed where the performance of each of existing model is examined and its contribution is reported. To add to these works, it is complemented through developing constructive solution methods and extending the existing published works by introducing the product substitution models which so far has not received sufficient attention despite its importance to supply chain management decisions. To illustrate this dissertation provides an easy-to-use approach that utilizes the known network flow problem or knapsack problem. Then, a polynomial in fashion algorithm is developed to solve it. Extensive numerical experiments are conducted to compare the performance of the proposed method and some existing ones. Results show that the proposed approach though approximates, yet, it simplifies the solution steps without sacrificing accuracy. Further, this dissertation addresses the important arena of product substitute models. These models deal with two perishable products, a primary product and a surrogate one. The primary product yields higher profit than the surrogate. If the demand of the primary exceeds the available quantity and there is excess amount of the surrogate, this excess quantity can be utilized to fulfill the shortage. The objective is to find the optimal lot sizes of both products, that minimize the total cost (alternatively, maximize the profit). Simulation is utilized to validate the developed model. Since the analytical solutions are difficult to obtain, Mathematical software is employed to find the optimal results. Numerical experiments are also conducted to analyze the behavior of the optimal results versus the governing parameters. The results show the contribution of surrogate approach to the overall performance of the policy. From a practical perspective, this dissertation introduces the applications of the proposed models and methods in different industries such as inventory management, grocery retailing, fashion sector and hotel reservation

    Multi-product budget-constrained acquistion and pricing with uncertain demand and supplier quantity discounts

    Get PDF
    We consider the joint acquisition and pricing problem where the retailer sells multiple products with uncertain demands and the suppliers provide all unit quantity discounts.The problem is to determine the optimal acquisition quantities and selling prices so as to maximize the retailer’s expected profit, subject to a budget constraint. This is the first extension to consider supplier discounts in the constrained multi-product newsvendor pricing problem. We establish a mixed integer nonlinear programming (MINLP) model to formulate the problem, and developaLagrangian based solution approach.Computational results for the test problems involving up to thousand products are reported, which show that the Lagrangian based approach can obtain high-quality solutions in a very short time

    Quadratic Approximation of the Newsvendor Problem with Imperfect Quality

    Get PDF
    The paper presents a newsvendor problem in a fuzzy environment by introducing product quality as a fuzzy variable, and product demand as a probability distribution in an economic and supply chain management environment. In order to determine the optimal order quantity, a methodology is developed where the solution is achieved using a fuzzy ranking method combined with a quadratic programming problem approximation. Numerical examples are provided and compared in both situations, namely fuzzy and crisp. The results of these numerical examples show that the decision maker has to order a higher quantity when product quality is a fuzzy variable. The model can be useful for real world problems when historical data are not available

    Virtual transshipments and revenue-sharing contracts in supply chain management

    Get PDF
    This dissertation presents the use of virtual transshipments and revenue-sharing contracts for inventory control in a small scale supply chain. The main objective is to maximize the total profit in a centralized supply chain or maximize the supply chain\u27s profit while keeping the individual components\u27 incentives in a decentralized supply chain. First, a centralized supply chain with two capacitated manufacturing plants situated in two distinct geographical regions is considered. Normally, demand in each region is mostly satisfied by the local plant. However, if the local plant is understocked while the remote one is overstocked, some of the newly generated demand can be assigned to be served by the more remote plant. The sources of the above virtual lateral transshipments, unlike the ones involved in real lateral transshipments, do not need to have nonnegative inventory levels throughout the transshipment process. Besides the theoretical analysis for this centralized supply chain, a computational study is conducted in detail to illustrate the ability of virtual lateral transshipments to reduce the total cost. The impacts of the parameters (unit holding cost, production cost, goodwill cost, etc.) on the cost savings that can be achieved by using the transshipment option are also assessed. Then, a supply chain with one supplier and one retailer is considered where a revenue-sharing contract is adopted. In this revenue-sharing contract, the retailer may obtain the product from the supplier at a less-than-production-cost price, but in exchange, the retailer must share the revenue with the supplier at a pre-set revenuesharing rate. The objective is to maximize the overall supply chain\u27s total profit while upholding the individual components\u27 incentives. A two-stage Stackelberg game is used for the analysis. In this game, one player is the leader and the other one is the follower. The analysis reveals that the party who keeps more than half of the revenue should also be the leader of the Stackelberg game. Furthermore, the adoption of a revenue-sharing contract in a supply chain with two suppliers and one retailer under a limited amount of available funds is analyzed. Using the revenue-sharing contract, the retailer pays a transfer cost rate of the production cost per unit when he obtains the items from the suppliers, and shares the revenue with the suppliers at a pre-set revenue-sharing rate. The two suppliers have different transfer cost rates and revenue-sharing rates. The retailer will earn more profit per unit with a higher transfer cost rate. How the retailer orders items from the two suppliers to maximize his expected profit under limited available funds is analyzed next. Conditions are shown under which the optimal way the retailer orders items from the two suppliers exists

    Revenue Management and Demand Fulfillment: Matching Applications, Models, and Software

    Get PDF
    Recent years have seen great successes of revenue management, notably in the airline, hotel, and car rental business. Currently, an increasing number of industries, including manufacturers and retailers, are exploring ways to adopt similar concepts. Software companies are taking an active role in promoting the broadening range of applications. Also technological advances, including smart shelves and radio frequency identification (RFID), are removing many of the barriers to extended revenue management. The rapid developments in Supply Chain Planning and Revenue Management software solutions, scientific models, and industry applications have created a complex picture, which appears not yet to be well understood. It is not evident which scientific models fit which industry applications and which aspects are still missing. The relation between available software solutions and applications as well as scientific models appears equally unclear. The goal of this paper is to help overcome this confusion. To this end, we structure and review three dimensions, namely applications, models, and software. Subsequently, we relate these dimensions to each other and highlight commonalities and discrepancies. This comparison also provides a basis for identifying future research needs.Manufacturing;Revenue Management;Software;Advanced Planning Systems;Demand Fulfillment

    Tales of a so(u)rcerer : optimal sourcing decisions under alternative capacitated suppliers and general cost structures

    Get PDF
    Most companies must procure items necessary for their businesses from out- side sources, where there are typically a number of competing suppliers with varying cost structures, price schemes, and capacities. This situation poses some interesting research questions from the outlook of different parties in the supply chain. We consider this problem from the perspective of (i) the party that needs to outsource, (ii) the party that is willing to serve as the source, and (iii) the party that has in-house capability to spare. We allow for stochastic demand, capacitated facilities (in-house and suppliers'), and general structures for all relevant cost components. Some simpler versions of this problem are shown to be NP-hard in the literature. We make use of a novel dynamic programming model with pseudo-polynomial complexity to address all three perspectives by solving the corresponding problems to optimality. Our modeling approach also lets us analyze different aspects of the problem environment such as pricing schemes and channel coordination issues. We derive several managerial insights, some of which are counter to collective intuition

    Revenue Management and Demand Fulfillment: Matching Applications, Models, and Software

    Get PDF
    Recent years have seen great successes of revenue management, notably in the airline, hotel, and car rental business. Currently, an increasing number of industries, including manufacturers and retailers, are exploring ways to adopt similar concepts. Software companies are taking an active role in promoting the broadening range of applications. Also technological advances, including smart shelves and radio frequency identification (RFID), are removing many of the barriers to extended revenue management. The rapid developments in Supply Chain Planning and Revenue Management software solutions, scientific models, and industry applications have created a complex picture, which appears not yet to be well understood. It is not evident which scientific models fit which industry applications and which aspects are still missing. The relation between available software solutions and applications as well as scientific models appears equally unclear. The goal of this paper is to help overcome this confusion. To this end, we structure and review three dimensions, namely applications, models, and software. Subsequently, we relate these dimensions to each other and highlight commonalities and discrepancies. This comparison also provides a basis for identifying future research needs

    A multi-period multi-product stochastic inventory problem with order-based loan

    Get PDF
    This paper investigates a multi-product stochastic inventory problem in which a cash-constrained online retailer can adopt order-based loan provided by some Chinese e-commerce platforms to speed up its cash recovery for deferred revenue. We first build deterministic models for the problem and then develop the corresponding stochastic programming models to maximize the retailers' expected profit over the planning horizon. The uncertainty of customer demand is represented by scenario trees, and a scenario reduction technique is used to solve the problem when the scenario trees are too large. We conduct numerical tests based on real data crawling from an online store. The results show that the stochastic model outperforms the deterministic model, especially when the retailer is less cash-constrained. Moreover, the retailer tends to choose using order-based loan when its initial available cash is small or facing long receipt delay length

    Open source solution approaches to a class of stochastic supply chain problems

    Get PDF
    This research proposes a variety of solution approaches to a class of stochastic supply chain problems, with normally distributed demand in a certain period of time in the future. These problems aim to provide the decisions regarding the production levels; supplier selection for raw materials; and optimal order quantity. The typical problem could be formulated as a mixed integer nonlinear program model, and the objective function for maximizing the expected profit is expressed in an integral format. In order to solve the problem, an open source solution package BONMIN is first employed to get the exact optimum result for small scale instances; then according to the specific feature of the problem a tailored nonlinear branch and bound framework is developed for larger scale problems through the introduction of triangular approximation approach and an iterative algorithm. Both open source solvers and commercial solvers are employed to solve the inner problem, and the results to larger scale problems demonstrate the competency of introduced approaches. In addition, two small heuristics are also introduced and the selected results are reported

    Cooperation in Supply Chain Networks: Motives, Outcomes, and Barriers

    Get PDF
    This paper analyzes the phenomenon of cooperation in modern supply chains in the light of Game Theory. We first provide a discussion on the meaning of cooperation in supply chains, its motives, outcomes and barriers. We then highlighted the applicability of Cooperative Game Theory as methodology for analyzing cooperation in supply chains. Second, we review recent studies that analyze the cooperation in supply chains by means of cooperative game theory. A special emphasis will be given inventory centralizations games. Finally, gaps in the literature are identified to clarify and to suggest future research opportunities
    • …
    corecore