207 research outputs found

    Statistical modeling of polarimetric SAR data: a survey and challenges

    Get PDF
    Knowledge of the exact statistical properties of the signal plays an important role in the applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades, a considerable research effort has been devoted to finding accurate statistical models for PolSAR data, and a number of distributions have been proposed. In order to see the differences of various models and to make a comparison among them, a survey is provided in this paper. Texture models, which could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact mathematical form, are mainly explained. Probability density functions for the single look data and the multilook data are reviewed, as well as the advantages and applicable context of those models. As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.Peer ReviewedPostprint (published version

    A K-Wishart Markov random field model for clustering of polarimetric SAR imagery

    Get PDF
    Accepted manuscript, embargo 24 months. Link to publishers version: https://doi.org/10.1109/IGARSS.2011.6049317A clustering method that combines an advanced statistical distribution with spatial contextual information is proposed for multilook polarimetric synthetic aperture radar (PolSAR) data. It is based on a Markov random field (MRF) model that integrates a K-Wishart distribution for the PolSAR data statistics conditioned to each image cluster and a Potts model for the spatial context. Specifically, the proposed algorithm is constructed based upon the expectation maximization (EM) algorithm. A new formulation of EM is developed to jointly address parameter estimation in the K-Wishart distribution and the spatial context model, and also minimization of the energy function. Experiments are presented with simulated and real quad-pol L-band data

    Polarimetric SAR Change Detection with the Complex Hotelling-Lawley Trace Statistic

    Get PDF
    Accepted manuscript version. Published version at http://dx.doi.org/10.1109/TGRS.2016.2532320.In this paper, we propose a new test statistic for unsupervised change detection in polarimetric radar images. We work with multilook complex covariance matrix data, whose underlying model is assumed to be the scaled complex Wishart distribution. We use the complex-kind Hotelling-Lawley trace statistic for measuring the similarity of two covariance matrices. The distribution of the Hotelling-Lawley trace statistic is ap- proximated by a Fisher-Snedecor distribution, which is used to define the significance level of a false alarm rate regulated change detector. Experiments on simulated and real PolSAR data sets demonstrate that the proposed change detection method gives detections rates and error rates that are comparable with the generalized likelihood ratio test

    Improved POLSAR Image Classification by the Use of Multi-Feature Combination

    Get PDF
    Polarimetric SAR (POLSAR) provides a rich set of information about objects on land surfaces. However, not all information works on land surface classification. This study proposes a new, integrated algorithm for optimal urban classification using POLSAR data. Both polarimetric decomposition and time-frequency (TF) decomposition were used to mine the hidden information of objects in POLSAR data, which was then applied in the C5.0 decision tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric decomposition and TF decomposition all proved useful in the process. TF information played a great role in delineation between urban/built-up areas and vegetation. Three polarimetric features (entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity of coherence) were found most helpful in urban areas classification. This study indicates that the integrated use of polarimetric decomposition and TF decomposition of POLSAR data may provide improved feature extraction in heterogeneous urban areas

    Hierarchical Segmentation of Polarimetric SAR Images Using Heterogeneous Clutter Models

    Get PDF
    International audienceIn this paper, heterogeneous clutter models are used to describe polarimetric synthetic aperture radar (PolSAR) data. The KummerU distribution is introduced to model the PolSAR clutter. Then, a detailed analysis is carried out to evaluate the potential of this new multivariate distribution. It is implemented in a hierarchical maximum likelihood segmentation algorithm. The segmentation results are shown on both synthetic and high-resolution PolSAR data at the X- and L-bands. Finally, some methods are examined to determine automatically the "optimal" number of segments in the final partition
    corecore