1,587 research outputs found

    Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    Get PDF
    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions

    Why musical memory can be preserved in advanced Alzheimer's disease

    Get PDF
    Musical memory is relatively preserved in Alzheimer's disease and other dementias. In a 7 Tesla functional MRI study employing multi-voxel pattern analysis, Jacobsen et al. identify brain regions encoding long-term musical memory in young healthy controls, and show that these same regions display relatively little atrophy and hypometabolism in patients with Alzheimer's disease.See Clark and Warren (doi:10.1093/brain/awv148) for a scientific commentary on this article. Musical memory is relatively preserved in Alzheimer's disease and other dementias. In a 7 Tesla functional MRI study employing multi-voxel pattern analysis, Jacobsen et al. identify brain regions encoding long-term musical memory in young healthy controls, and show that these same regions display relatively little atrophy and hypometabolism in patients with Alzheimer's disease.See Clark and Warren (doi:10.1093/awv148) for a scientific commentary on this article

    Right Neural Substrates of Language and Music Processing Left Out: Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modelling (MACM)

    Get PDF
    Introduction: Language and music processing have been investigated in neuro-based research for over a century. However, consensus of independent and shared neural substrates among the domains remains elusive due to varying neuroimaging methodologies. Identifying functional connectivity in language and music processing via neuroimaging meta-analytic methods provides neuroscientific knowledge of higher cognitive domains and normative models may guide treatment development in communication disorders based on principles of neural plasticity. Methods: Using BrainMap software and tools, the present coordinate-based meta-analysis analyzed 65 fMRI studies investigating language and music processing in healthy adult subjects. We conducted activation likelihood estimates (ALE) in language processing, music processing, and language + music (Omnibus) processing. Omnibus ALE clusters were used to elucidate functional connectivity by use of meta-analytic connectivity modelling (MACM). Paradigm Class and Behavioral Domain analyses were completed for the ten identified nodes to aid functional MACM interpretation. Results: The Omnibus ALE revealed ten peak activation clusters (bilateral inferior frontal gyri, left medial frontal gyrus, right superior temporal gyrus, left transverse temporal gyrus, bilateral claustrum, left superior parietal lobule, right precentral gyrus, and right anterior culmen). MACM demonstrates an interconnected network consisting of unidirectional and bidirectional connectivity. Subsequent analyses demonstrated nodal involvement across 44 BrainMap paradigms and 32 BrainMap domains. Discussion: These findings demonstrate functional connectivity among Omnibus areas of activation in language and music processing. We analyze ALE and MACM outcomes by comparing them to previously observed roles in cognitive processing and functional network connectivity. Finally, we discuss the importance of translational neuroimaging and need for normative models guiding intervention

    Hippocampal sclerosis affects fMR-adaptation of lyrics and melodies in songs

    Get PDF
    Songs constitute a natural combination of lyrics and melodies, but it is unclear whether and how these two song components are integrated during the emergence of a memory trace. Network theories of memory suggest a prominent role of the hippocampus, together with unimodal sensory areas, in the build-up of conjunctive representations. The present study tested the modulatory influence of the hippocampus on neural adaptation to songs in lateral temporal areas. Patients with unilateral hippocampal sclerosis and healthy matched controls were presented with blocks of short songs in which lyrics and/or melodies were varied or repeated in a crossed factorial design. Neural adaptation effects were taken as correlates of incidental emergent memory traces. We hypothesized that hippocampal lesions, particularly in the left hemisphere, would weaken adaptation effects, especially the integration of lyrics and melodies. Results revealed that lateral temporal lobe regions showed weaker adaptation to repeated lyrics as well as a reduced interaction of the adaptation effects for lyrics and melodies in patients with left hippocampal sclerosis. This suggests a deficient build-up of a sensory memory trace for lyrics and a reduced integration of lyrics with melodies, compared to healthy controls. Patients with right hippocampal sclerosis showed a similar profile of results although the effects did not reach significance in this population. We highlight the finding that the integrated representation of lyrics and melodies typically shown in healthy participants is likely tied to the integrity of the left medial temporal lobe. This novel finding provides the first neuroimaging evidence for the role of the hippocampus during repetitive exposure to lyrics and melodies and their integration into a song

    The Neuroscience of Musical Improvisation

    Get PDF
    Researchers have recently begun to examine the neural basis of musical improvisation, one of the most complex forms of creative behavior. The emerging field of improvisation neuroscience has implications not only for the study of artistic expertise, but also for understanding the neural underpinnings of domain-general processes such as motor control and language production. This review synthesizes functional magnetic resonance imagining (fMRI) studies of musical improvisation, including vocal and instrumental improvisation, with samples of jazz pianists, classical musicians, freestyle rap artists, and non-musicians. A network of prefrontal brain regions commonly linked to improvisatory behavior is highlighted, including the pre-supplementary motor area, medial prefrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex. Activation of premotor and lateral prefrontal regions suggests that a seemingly unconstrained behavior may actually benefit from motor planning and cognitive control. Yet activation of cortical midline regions points to a role of spontaneous cognition characteristic of the default network. Together, such results may reflect cooperation between large-scale brain networks associated with cognitive control and spontaneous thought. The improvisation literature is integrated with Pressing’s theoretical model, and discussed within the broader context of research on the brain basis of creative cognition

    Learning, Arts, and the Brain: The Dana Consortium Report on Arts and Cognition

    Get PDF
    Reports findings from multiple neuroscientific studies on the impact of arts training on the enhancement of other cognitive capacities, such as reading acquisition, sequence learning, geometrical reasoning, and memory

    When Music and Long-Term Memory Interact: Effects of Musical Expertise on Functional and Structural Plasticity in the Hippocampus

    Get PDF
    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus

    Melody processing characterizes functional neuroanatomy in the aging brain

    Get PDF
    The functional neuroanatomical mechanisms underpinning cognition in the normal older brain remain poorly defined, but have important implications for understanding the neurobiology of aging and the impact of neurodegenerative diseases. Auditory processing is an attractive model system for addressing these issues. Here, we used fMRI of melody processing to investigate auditory pattern processing in normal older individuals. We manipulated the temporal (rhythmic) structure and familiarity of melodies in a passive listening, ‘sparse’ fMRI protocol. A distributed cortico-subcortical network was activated by auditory stimulation compared with silence; and within this network, we identified separable signatures of anisochrony processing in bilateral posterior superior temporal lobes; melodic familiarity in bilateral anterior temporal and inferior frontal cortices; and melodic novelty in bilateral temporal and left parietal cortices. Left planum temporale emerged as a ‘hub’ region functionally partitioned for processing different melody dimensions. Activation of Heschl’s gyrus by auditory stimulation correlated with the integrity of underlying cortical tissue architecture, measured using multi-parameter mapping. Our findings delineate neural substrates for analyzing perceptual and semantic properties of melodies in normal aging. Melody (auditory pattern) processing may be a useful candidate paradigm for assessing cerebral networks in the older brain and potentially, in neurodegenerative diseases of later life

    Neurology of foreign language aptitude

    Get PDF
    This state-of-the art paper focuses on the poorly explored issue of foreign language aptitude, attempting to present the latest developments in this field and reconceptualizations of the construct from the perspective of neuroscience. In accordance with this goal, it first discusses general directions in neurolinguistic research on foreign language aptitude, starting with the earliest attempts to define the neurological substrate for talent, sources of difficulties in the neurolinguistic research on foreign language aptitude and modern research methods. This is followed by the discussion of the research on the phonology of foreign language aptitude with emphasis on functional and structural studies as well as their consequences for the knowledge of the concept. The subsequent section presents the studies which focus on lexical and morphosyntactic aspects of foreign language aptitude. The paper ends with a discussion of the limitations of contemporary research, the future directions of such research and selected methodological issues
    corecore