8,984 research outputs found

    From Freedom From to Freedom To: New Perspectives on Intentional Action

    Get PDF
    There are few concepts as relevant as that of intentional action in shaping our sense of self and the interaction with the environment. At the same time, few concepts are so elusive. Indeed, both conceptual and neuroscientific accounts of intentional agency have proven to be problematic. On the one hand, most conceptual views struggle in defining how agents can adequately exert control over their actions. On the other hand, neuroscience settles for definitions by exclusion whereby key features of human intentional actions, including goal-directness, remain underspecified. This paper reviews the existing literature and sketches how this gap might be filled. In particular, we defend a gradualist notion of intentional behavior, which revolves around the following key features: autonomy, flexibility in the integration of causal vectors, and control

    On the time-course and frequency selectivity of the EEG for different modes of response selection : evidence from speech production and keyboard pressing

    Get PDF
    Objective To compare brain activity in the alpha and beta bands in relation to different modes of response selection, and to assess the domain generality of the response selection mechanism using verbal and non-verbal tasks. Methods We examined alpha and beta event-related desynchronization (ERD) to analyze brain reactivity during the selection of verbal (word production) and non-verbal motor actions (keyboard pressing) under two different response modes: externally selected and self-selected. Results An alpha and beta ERD was observed for both the verbal and non-verbal tasks in both the externally and the self-selected modes. For both tasks, the beta ERD started earlier and was longer in the self-selected mode than in the externally selected mode. The overall pattern of results between the verbal and non-verbal motor behaviors was similar. Conclusions The pattern of alpha and beta ERD is affected by the mode of response selection suggesting that the activity in both frequency bands contributes to the process of selecting actions. We suggest that activity in the alpha band may reflect attentional processes while activity in the beta band may be more closely related to the execution and selection process. Significance These results suggest that a domain general process contributes to the planning of speech and other motor actions. This finding has potential clinical implications, for the use of diverse motor tasks to treat disorders of motor planning

    Dissociating What and When of Intentional Actions

    Get PDF
    Recent brain imaging research revealed that internally guided actions involve the frontomedian wall, in particular the preSMA and the rostral cingulate zone (RCZ). However, a systematic decomposition of different components of intentional action is still lacking. We propose a new paradigm to dissociate two components of internally guided behavior: Which action to perform (selection component) and when to perform the action (timing component). Our results suggest a neuro-functional dissociation of intentional action timing and intentional action selection. While the RCZ is more strongly activated for the selection component, a part of the superior medial frontal gyrus is more strongly activated for the timing component. However, in a post hoc conducted signal strength analysis we did also observe an interaction between action timing and action selection, indicating that decisional processes concerning action timing and action selection are not completely dissociated but interdependent. Altogether this study challenges the idea of a unitary system supporting voluntary action and instead suggests the existence of different neuroanatomically dissociable subfunctions

    Superior parietal cortex and the attention to delayed intention: An rTMS study.

    Get PDF
    This study aimed to investigate whether the superior parietal cortex is causally involved in PM and, if so, what is its functional role. We applied repetitive transcranial magnetic stimulation (rTMS) to the left and right superior parietal cortex, and we evaluated the TMS effects on two different PM tasks that required to direct the attention towards either the external stimuli (\u2018Monitoring-load\u2019 task) or the intention in memory (\u2018Retrospective-load\u2019 task). rTMS of left parietal cortex produced a facilitation of PM performance in both tasks. This was coupled by slower responses to the ongoing activity, for left and right parietal stimulation, but selectively in the \u2018Retrospective-load\u2019 condition. The present results suggest that superior parietal cortex is causally involved in biasing top-down attentional resources between the external, ongoing stimuli and the internal, PM intentions. The possible physiological mechanisms underlying the TMS-related improvement in PM performance are discussed

    Distinction between Externally vs. Internally Guided Decision-Making: Operational Differences, Meta-Analytical Comparisons and Their Theoretical Implications

    Get PDF
    Most experimental studies of decision-making have specifically examined situations in which a single less-predictable correct answer exists (externally guided decision-making under uncertainty). Along with such externally guided decision-making, there are instances of decision-making in which no correct answer based on external circumstances is available for the subject (internally guided decision-making). Such decisions are usually made in the context of moral decision-making as well as in preference judgment, where the answer depends on the subject’s own, i.e., internal, preferences rather than on external, i.e., circumstantial, criteria. The neuronal and psychological mechanisms that allow guidance of decisions based on more internally oriented criteria in the absence of external ones remain unclear. This study was undertaken to compare decision-making of these two kinds empirically and theoretically. First, we reviewed studies of decision-making to clarify experimental–operational differences between externally guided and internally guided decision-making. Second, using multi-level kernel density analysis, a whole-brain-based quantitative meta-analysis of neuroimaging studies was performed. Our meta-analysis revealed that the neural network used predominantly for internally guided decision-making differs from that for externally guided decision-making under uncertainty. This result suggests that studying only externally guided decision-making under uncertainty is insufficient to account for decision-making processes in the brain. Finally, based on the review and results of the meta-analysis, we discuss the differences and relations between decision-making of these two types in terms of their operational, neuronal, and theoretical characteristics

    Inferring human intentions from the brain data

    Get PDF

    Neuroanatomy and rehabilitation of the directional motor deficits associated with unilateral neglect

    Get PDF

    Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.

    Get PDF
    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit

    Neural Dynamics of Learning and Performance of Fixed Sequences: Latency Pattern Reorganizations and the N-STREAMS Model

    Full text link
    Fixed sequences performed from memory play a key role in human cultural behavior, especially in music and in rapid communication through speaking, handwriting, and typing. Upon first performance, fixed sequences are often produced slowly, but extensive practice leads to performance that is both fluid and as rapid as allowed by constraints inherent in the task or the performer. The experimental study of fixed sequence learning and production has generated a large database with some challenging findings, including practice-related reorganizations of temporal properties of performance. In this paper, we analyze this literature and identify a coherent set of robust experimental effects. Among these are both the sequence length effect on latency, a dependence of reaction time on sequence length, and practice-dependent lost of the lengths effect on latency. We then introduce a neural network architecture capable of explaining these effects. Called the NSTREAMS model, this multi-module architecture embodies the hypothesis that the brain uses several substrates for serial order representation and learning. The theory describes three such substrates and how learning autonomously modifies their interaction over the course of practice. A key feature of the architecture is the co-operation of a 'competitive queuing' performance mechanism with both fundamentally parallel ('priority-tagged') and fundamentally sequential ('chain-like') representations of serial order. A neurobiological interpretation of the architecture suggests how different parts of the brain divide the labor for serial learning and performance. Rhodes (1999) presents a complete mathematical model as implementation of the architecture, and reports successful simulations of the major experimental effects. It also highlights how the network mechanisms incorporated in the architecture compare and contrast with earlier substrates proposed for competitive queuing, priority tagging and response chaining.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-1-0409); National Institute of Health (RO1 DC02852

    Enhanced functional synchronization of medial and lateral PFC underlies internally-guided action planning

    Get PDF
    Actions are often internally guided, reflecting our covert will and intentions. The dorsomedial prefrontal cortex, including the pre-Supplementary Motor Area (pre-SMA), has been implicated in the internally generated aspects of action planning, such as choice and intention. Yet, the mechanism by which this area interacts with other cognitive brain regions such as the dorsolateral prefrontal cortex, a central node in decision-making, is still unclear. To shed light on this mechanism, brain activity was measured via fMRI and intracranial EEG in two studies during the performance of visually cued repeated finger tapping in which the choice of finger was guided by either a presented number (external) or self-choice (internal). A functional-MRI (fMRI) study in 15 healthy participants demonstrated that the pre-SMA, compared to the SMA proper, was more active and also more functionally correlated with the dorsolateral prefrontal cortex during internally compared to externally guided action planning (p < 0.05, random effect). In a similar manner, an intracranial-EEG study in five epilepsy patients showed greater inter-regional gamma-related connectivity between electrodes situated in medial and lateral aspects of the prefrontal cortex for internally compared to externally guided actions. Although this finding was observed for groups of electrodes situated both in the pre-SMA and SMA-proper, increased intra-cluster gamma-related connectivity was only observed for the pre-SMA (sign-test, p < 0.0001). Overall our findings provide multi-scale indications for the involvement of the dorsomedial prefrontal cortex, and especially the pre-SMA, in generating internally guided motor planning. Our intracranial-EEG results further point to enhanced functional connectivity between decision-making- and motor planning aspects of the PFC, as a possible neural mechanism for internally generated action planning
    corecore