11 research outputs found

    Development and application of a platform for harmonisation and integration of metabolomics data

    Get PDF
    Integrating diverse metabolomics data for molecular epidemiology analyses provides both opportuni- ties and challenges in the field of human health research. Combining patient cohorts may improve power and sensitivity of analyses but is challenging due to significant technical and analytical vari- ability. Additionally, current systems for the storage and analysis of metabolomics data suffer from scalability, query-ability, and integration issues that limit their adoption for molecular epidemiological research. Here, a novel platform for integrative metabolomics is developed, which addresses issues of storage, harmonisation, querying, scaling, and analysis of large-scale metabolomics data. Its use is demonstrated through an investigation of molecular trends of ageing in an integrated four-cohort dataset where the advantages and disadvantages of combining balanced and unbalanced cohorts are explored, and robust metabolite trends are successfully identified and shown to be concordant with previous studies.Open Acces

    A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows

    Get PDF
    Preprocessing data in a reproducible and robust way is one of the current challenges in untargeted metabolomics workflows. Data curation in liquid chromatography–mass spectrometry (LC–MS) involves the removal of biologically non-relevant features (retention time, m/z pairs) to retain only high-quality data for subsequent analysis and interpretation. The present work introduces TidyMS, a package for the Python programming language for preprocessing LC–MS data for quality control (QC) procedures in untargeted metabolomics workflows. It is a versatile strategy that can be customized or fit for purpose according to the specific metabolomics application. It allows performing quality control procedures to ensure accuracy and reliability in LC–MS measurements, and it allows preprocessing metabolomics data to obtain cleaned matrices for subsequent statistical analysis. The capabilities of the package are shown with pipelines for an LC–MS system suitability check, system conditioning, signal drift evaluation, and data curation. These applications were implemented to preprocess data corresponding to a new suite of candidate plasma reference materials developed by the National Institute of Standards and Technology (NIST; hypertriglyceridemic, diabetic, and African-American plasma pools) to be used in untargeted metabolomics studies in addition to NIST SRM 1950 Metabolites in Frozen Human Plasma. The package offers a rapid and reproducible workflow that can be used in an automated or semi-automated fashion, and it is an open and free tool available to all users.Fil: Riquelme, Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; ArgentinaFil: Zabalegui, NicolĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica InorgĂĄnica, AnalĂ­tica y QuĂ­mica FĂ­sica; ArgentinaFil: Marchi, Pablo Gabriel. Universidad de Buenos Aires. Facultad de IngenierĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Jones, Christina M.. National Institute Of Standards And Technology; Estados UnidosFil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentin

    Prediction of response of methotrexate in patients with rheumatoid arthritis using serum lipidomics

    Get PDF
    Methotrexate (MTX) is a common first-line treatment for new-onset rheumatoid arthritis (RA). However, MTX is ineffective for 30-40% of patients and there is no way to know which patients might benefit. Here, we built statistical models based on serum lipid levels measured at two time-points (pre-treatment and following 4 weeks on-drug) to investigate if MTX response (by 6 months) could be predicted. Patients about to commence MTX treatment for the first time were selected from the Rheumatoid Arthritis Medication Study (RAMS). Patients were categorised as good or non-responders following 6 months on-drug using EULAR response criteria. Serum lipids were measured using ultra-performance liquid chromatography-mass spectrometry and supervised machine learning methods (including regularized regression, support vector machine and random forest) were used to predict EULAR response. Models including lipid levels were compared to models including clinical covariates alone. The best performing classifier including lipid levels (assessed at 4 weeks) was constructed using regularized regression (ROC AUC 0.61 ± 0.02). However, the clinical covariate based model outperformed the classifier including lipid levels when either pre- or on-treatment time-points were investigated (ROC AUC 0.68 ± 0.02). Pre- or early-treatment serum lipid profiles are unlikely to inform classification of MTX response by 6 months with performance adequate for use in RA clinical management

    Metabolome-wide association study on ABCA7 indicates a role of ceramide metabolism in Alzheimer’s disease

    Get PDF
    Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer’s disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography–mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10−5 to 1.3 × 10−44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049–1.4 × 10−5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD

    An improved pipeline for LC-MS spectral processing and annotation.

    Get PDF
    Mass spectrometry coupled to liquid chromatography (LC-MS) is routinely used for metabolomics studies. While steps in data acquisition are fairly standardised and automated, structural metabolite identification still depends on manual curation and expert knowledge, forming a major bottleneck in LC-MS based pipelines. The work presented in this thesis represents a novel data processing strategy, which aids metabolite identification through deliberate us of the the correlation structure that exists between spectral features, as well as chromatographic profile and data acquisition order. This strategy aligns features originating from the same chemical entity across all samples as a group, ensuring that chemically-related features are accurately aligned despite fluctuations in the chromatographic and mass spectrometric measurements occurring during the experimental run time. Spectral features aligned in this way are consequently matched to in-house chemical standards databases more efficiently and accurately, on account of the retained and chemically-relevant spectral information. This pipeline has been developed and is presented as an open-source R package - massFlowR. This thesis demonstrates the utility of massFlowR with simulated data, as well as an open-source urine metabolomics study DEVSET, and a large-scale cohort study AIRWAVE, where the performance of massFlowR is compared with the widely-used package XCMS.Open Acces

    Metabolome-wide association study on ABCA7 indicates a role of ceramide metabolism in Alzheimer's disease.

    Get PDF
    Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD

    Direct on-swab metabolic profiling of vaginal microbiome host interactions during pregnancy and preterm birth

    Get PDF
    The pregnancy vaginal microbiome contributes to risk of preterm birth, the primary cause of death in children under 5 years of age. Here we describe direct on-swab metabolic profiling by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) for sample preparation-free characterisation of the cervicovaginal metabolome in two independent pregnancy cohorts (VMET, n = 160; 455 swabs; VMET II, n = 205; 573 swabs). By integrating metataxonomics and immune profiling data from matched samples, we show that specific metabolome signatures can be used to robustly predict simultaneously both the composition of the vaginal microbiome and host inflammatory status. In these patients, vaginal microbiota instability and innate immune activation, as predicted using DESI-MS, associated with preterm birth, including in women receiving cervical cerclage for preterm birth prevention. These findings highlight direct on-swab metabolic profiling by DESI-MS as an innovative approach for preterm birth risk stratification through rapid assessment of vaginal microbiota-host dynamics

    Characterisation of xenometabolome signatures in complex biomatrices for enhanced human population phenotyping

    Get PDF
    Metabolic phenotyping facilitates the analysis of low molecular weight compounds in complex biological samples, with resulting metabolite profiles providing a window on endogenous processes and xenobiotic exposures. Accurate characterisation of the xenobiotic component of the metabolome (the xenometabolome) is particularly valuable when metabolic phenotyping is used for epidemiological and clinical population studies where exposure of participants to xenobiotics is unknown or difficult to control/estimate. Additionally, as metabolic phenotyping has increasingly been incorporated into toxicology and drug metabolism research, phenotyping datasets may be exploited to study xenobiotic metabolism at the population level. This thesis describes novel analytical and data-driven strategies for broadening xenometabolome coverage to allow effective partitioning of endogenous and xenobiotic metabolome signatures. The data driven strategy was multi-faceted, involving the generation of a reference database and the application of statistical methodologies. The database contains over 100 common xenobiotics profiles - generated using established liquid chromatography-mass-spectrometry methods – and provided the basis for an empirically derived screen for human urine and blood samples. The prevalence of these xenobiotics was explored in an exemplar phenotyping dataset (ALZ; n = 650; urine), with 31 xenobiotics detected in an initial screen. Statistical based methods were tailored to extract xenobiotic-related signatures and evaluated using drugs with well-characterised human metabolism. To complement the data-driven strategies for xenometabolome coverage, a more analytical based strategy was additionally developed. A dispersive solid phase extraction sample preparation protocol for blood products was optimised, permitting efficient removal of lipids and proteins, with minimal effect on low molecular weight metabolites. The suitability and reproducibility of this method was evaluated in two independent blood sample sets (AZstudy12; n=171, MARS; n=285). Finally, these analytical and statistical strategies were applied to two existing large-scale phenotyping study datasets: AIRWAVE (n = 3000 urine, n=3000 plasma samples) and ALZ (n= 650 urine, n= 449 serum) and used to explore both xenobiotic and endogenous responses to triclosan and polyethylene glycol exposure. Exposure to triclosan highlighted affected pathways relating to sulfation, whilst exposure to PEG highlighted a possible perturbation in the glutathione cycle. The analytical and statistical strategies described in this thesis allow for a more comprehensive xenometabolome characterisation and have been used to uncover previously unreported relationships between xenobiotic and endogenous metabolism.Open Acces

    Development of novel mass spectrometric methods for point-of-care mucosal diagnostics

    Get PDF
    Human mucosal surfaces act as key interfaces between microbiota and host. As such, mucosal sampling using medical swabs is performed for diagnostic purposes that most commonly rely upon subsequent microscopy, culture or molecular-based assays. These approaches are limited in providing information on host response, which is a critical facet of pathology. In this thesis, I sought to test the hypothesis that both presence of specific microbes as well as their interactions with the human host are reflected in the mucosal metabolome and that this information could be exploited for mucosal diagnostic applications. The study aimed to develop a method for rapid, direct metabolic profiling from swabs using desorption electrospray ionisation mass spectrometry (DESI-MS). Method optimisation was conducted to elucidate optimal instrumental and geometrical conditions essential for the swab analysis. The application of the method for mucosal diagnostics was then assessed by characterising the metabolic profile of multiple bodysites (oral, nasal and vaginal mucosa), vaginal mucosa during two different physiological states (non-pregnant vs pregnant) and to detect a pathological state (bacterial vaginosis). Correlation of DESI-MS vaginal metabolic profiles with matched vaginal microbiota composition (VMC) characterised by 16S rRNA-based metataxonomics during pregnancy enabled to robustly predict a Lactobacillus dominant from depleted state but also major vaginal community states types (CST). The predictive performance of DESI-MS based models was comparable to “gold standard” LC-MS based models. Additionally, bacterial metabolite markers predictive of specific microbial genera were identified through matching to a spectral database constructed using pure cultures of commensal and pathogenic microbes often observed in the vaginal microbiome. In summary, DESI-MS has the potential to revolutionise the current way of mucosal based diagnostic by reducing significantly the time-demand needed for the characterisation of VMC, drug or inflammatory response to only few minutes and therefore could enable a faster decision making on patient’s treatment.Open Acces
    corecore