789,327 research outputs found

    LocalizaciĂłn de puntos de transferencia para transporte urbano y suburbano. Una alternativa metodolĂłgica para el caso de la Zona Urbana Toluca, MĂ©xico

    Get PDF
    The present work contains a terminals location proposal for urban and suburban transportation of Toluca city urban area, wich was elaborated as follows: 1. Conceptualization of terminals or transfer points, as a transportation infrastructure component. 2. Identification and analysis, under a systems approach, of the main variables that affect terminals location for urban transportation: land use with regard to population density and urban center activities; origins and destinations of transportation service; location and characteristicis of arterial streets; location of existing spontaneous transfer points. 3. Proposition of eight urban and suburban transportation terminals and its evaluation through the multiple criteria technique and final proposal of five transfer points in hierarchical order according to adopted criteria

    Theory and computation of optimal low- and medium-thrust transfers

    Get PDF
    This report presents the formulation of the optimal low- and medium-thrust orbit transfer control problem and methods for numerical solution of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup some examples to demonstrate the ability of two indirect methods to solve the resulting TPBVP's. The methods demonstrated are the multiple-point shooting method as formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are trade-offs to using either method. BOUNDSCO has very poor convergence for guesses that do not exhibit the correct switching structure. MBCM, however, converges for a wider range of guesses. However, BOUNDSCO's multi-point structure allows more freedom in quesses by increasing the node points as opposed to only quessing the initial state in MBCM. Finally, we note an additional drawback for BOUNDSCO: the routine does not supply information to the users routines for switching function polarity but only the location of a preset number of switching points

    Timing Management in 5G and Its Implications for Location Privacy

    Get PDF
    The fifth generation (5G) technological leap has arrived, bringing with it promises of incredible data rates and never before seen precision in location accuracy. However this self-same precision carries with it the significant question: how will it be protected? These questions form the underlying motivation for this article where we examine 5G architecture which employs a radio access part commonly termed a cloud or centralized radio access network (C-RAN). The C-RAN centralizes higher-level physical layer processes while keeping lowlevel processes distributed throughout the physical network. We show how this architecture both increases location-based privacy through improved physical-layer security, but creates new privacy concerns via the extension of the radio access network through fronthauls connecting data transfer among low and high-level processing. Concurrently, the proposed 5G variable subcarrier spacing further exacerbates the former point. Through simulation we quantify the decrease in location privacy given the aforementioned considerations. It is shown that location privacy is inversely proportional to subcarrier spacing for user equipment (UE) connected to multiple 5G access points. Specifically, for a (UE) using the widest allowable subcarrier spacing location privacy drops to approximately three meters

    Charge transfer induced energy storage in CaZnOS:Mn : insight from experimental and computational spectroscopy

    Get PDF
    CaZnOS: Mn2+ is a rare-earth-free luminescent compound with an orange broadband emission at 612 nm, featuring pressure sensing capabilities, often explained by defect levels where energy can be stored. Despite recent efforts from experimental and theoretical points of view, the underlying luminescence mechanisms in this phosphor still lack a profound understanding. By the evaluation of thermoluminescence as a function of the charging wavelength, we probe the defect levels allowing energy storage. Multiple trap depths and trapping routes are found, suggesting predominantly local trapping close to Mn2+ impurities. We demonstrate that this phosphor shows mechanoluminescence which is unexpectedly stable at high temperature (up to 200 degrees C), allowing pressure sensing in a wide temperature range. Next, we correlate the spectroscopic results with a theoretical study of the electronic structure and stability of the Mn defects in CaZnOS. DFT calculations at the PBE+U level indicate that Mn impurities are incorporated on the Zn site in a divalent charge state, which is confirmed by X-ray absorption spectroscopy (XAS). Ligand-to-metal charge transfer (LMCT) is predicted from the location of the Mn impurity levels, obtained from the calculated defect formation energies. This LMCT proves to be a very efficient pathway for energy storage. The excited state landscape of the Mn2+ 3d(5) electron configuration is assessed through the spin-correlated crystal field and a good correspondence with the emission and excitation spectra is found. In conclusion, studying phosphors at both a singleparticle level (i.e. via calculation of defect formation energies) and a many-particle level (i.e. by accurately localizing the excited states) is necessary to obtain a complete picture of luminescent defects, as demonstrated in the case of CaZnOS: Mn2+

    Penerapan Konsep Vehicle Routing Problem Dalam Kasus Pengangkutan Sampah Di Perkotaan

    Full text link
    . Cities in developing countries still operate a traditional waste transport and handling where rubbish were collected at regular intervals by specialized trucks from curb-side collection or transfer point prior to transport them to a final dump site. The problem are worsening as some cities experience exhausted waste collection services because the system is inadequately managed, fiscal capacity to invest in adequate vehicle fleets is lacking and also due to uncontrolled dumpsites location. In this paper problem of waste collection and handling is formulated based on Capacitated Vehicle Routing Problem Time Window Multiple Depo Intermediete Facility (CVRPTWMDIF). Each vehicle was assigned to visit several intermediate transfer points, until the truck loading or volume capacity reached then waste are transported to final landfill or dump site. Finally all trucks will return to a depot at the end of daily operation. Initially the solution of CVRPTWMDIF problem was tested on a simple hypothetical waste handling before being implemented into a real case problem. Solutions found using CVRPTWMDIF compared with the practice of waste transport and handling in the city of Bandung. Based on a common hours of operation and the same number of transport fleets, it was found that CVRPTWMDIF can reduce the volume of waste that is not transported by almost half by the end of the daily operations

    Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer

    Full text link
    Semantic annotations are vital for training models for object recognition, semantic segmentation or scene understanding. Unfortunately, pixelwise annotation of images at very large scale is labor-intensive and only little labeled data is available, particularly at instance level and for street scenes. In this paper, we propose to tackle this problem by lifting the semantic instance labeling task from 2D into 3D. Given reconstructions from stereo or laser data, we annotate static 3D scene elements with rough bounding primitives and develop a model which transfers this information into the image domain. We leverage our method to obtain 2D labels for a novel suburban video dataset which we have collected, resulting in 400k semantic and instance image annotations. A comparison of our method to state-of-the-art label transfer baselines reveals that 3D information enables more efficient annotation while at the same time resulting in improved accuracy and time-coherent labels.Comment: 10 pages in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Multiple scattering of polarized radiation by non-spherical grains: first results

    Get PDF
    We present the first numerical radiative transfer simulation of multiple light scattering in dust configurations containing aligned non-spherical (spheroidal) dust grains. Such models are especially important if one wants to explain the circular polarization of light, observed in a variety of astronomical objects. The radiative transfer problem is solved on the basis of the Monte Carlo method. Test simulations, confirming the correct numerical implementation of the scattering mechanism, are presented. As a first application, we investigate the linear and circular polarization of light coming from a spherical circumstellar shell. This shell contains perfectly aligned prolate or oblate spheroidal grains. The most remarkable features of the simulated linear polarization maps are so-called polarization null points where the reversal of polarization occurs. They appear in the case when the grain alignment axis is perpendicular to the line of sight. The maps of circular polarization have a sector-like structure with maxima at the ends of lines inclined to the grain alignment axis by \pm 45\degr.Comment: 13 pages, 14 figures, accepted by A&

    Adaptive Processing of Spatial-Keyword Data Over a Distributed Streaming Cluster

    Full text link
    The widespread use of GPS-enabled smartphones along with the popularity of micro-blogging and social networking applications, e.g., Twitter and Facebook, has resulted in the generation of huge streams of geo-tagged textual data. Many applications require real-time processing of these streams. For example, location-based e-coupon and ad-targeting systems enable advertisers to register millions of ads to millions of users. The number of users is typically very high and they are continuously moving, and the ads change frequently as well. Hence sending the right ad to the matching users is very challenging. Existing streaming systems are either centralized or are not spatial-keyword aware, and cannot efficiently support the processing of rapidly arriving spatial-keyword data streams. This paper presents Tornado, a distributed spatial-keyword stream processing system. Tornado features routing units to fairly distribute the workload, and furthermore, co-locate the data objects and the corresponding queries at the same processing units. The routing units use the Augmented-Grid, a novel structure that is equipped with an efficient search algorithm for distributing the data objects and queries. Tornado uses evaluators to process the data objects against the queries. The routing units minimize the redundant communication by not sending data updates for processing when these updates do not match any query. By applying dynamically evaluated cost formulae that continuously represent the processing overhead at each evaluator, Tornado is adaptive to changes in the workload. Extensive experimental evaluation using spatio-textual range queries over real Twitter data indicates that Tornado outperforms the non-spatio-textually aware approaches by up to two orders of magnitude in terms of the overall system throughput
    • 

    corecore