5,051 research outputs found

    The multimode covering location problem

    Get PDF
    In this paper we introduce the Multimode Covering Location Problem. This is a generalization of the Maximal Covering Location Problem that consists in locating a given number of facilities of different types with a limitation on the number of facilities sharing the same site. The problem is challenging and intrinsically much harder than its basic version. Nevertheless, it admits a constant factor approximation guarantee, which can be achieved combining two greedy algorithms. To improve the greedy solutions, we have developed a Variable Neighborhood Search approach, based on an exponential-size neighborhood. This algorithm computes good quality solutions in short computational time. The viability of the approach here proposed is also corroborated by a comparison with a Heuristic Concentration algorithm, which is presently the most effective approach to solve large instances of the Maximal Covering Location Problem

    Multimode extensions of combinatorial optimization problems

    Get PDF
    We review some complexity results and present a viable heuristic approach based on the Variable Neighborhood Search (VNS) framework for multimode extension of combinatorial optimization problems, such as the the Set Covering Problem (SCP) and the Covering Location Problem (CLP)

    Multimode Memories in Atomic Ensembles

    Full text link
    The ability to store multiple optical modes in a quantum memory allows for increased efficiency of quantum communication and computation. Here we compute the multimode capacity of a variety of quantum memory protocols based on light storage in ensembles of atoms. We find that adding a controlled inhomogeneous broadening improves this capacity significantly.Comment: Published version. Many thanks are due to Christoph Simon for his help and suggestions. (This acknowledgement is missing from the final draft: apologies!

    SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer

    Get PDF
    The balloon-borne LSPE mission is optimized to measure the linear polarization of the Cosmic Microwave Background at large angular scales. The Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed of 3 arrays of multi-mode bolometers cooled at 0.3K, with optical components and filters cryogenically cooled below 4K to reduce the background on the detectors. Polarimetry is achieved by means of large rotating half-wave plates and wire-grid polarizers in front of the arrays. The polarization modulator is the first component of the optical chain, reducing significantly the effect of instrumental polarization. In SWIPE we trade angular resolution for sensitivity. The diameter of the entrance pupil of the refractive telescope is 45 cm, while the field optics is optimized to collect tens of modes for each detector, thus boosting the absorbed power. This approach results in a FWHM resolution of 1.8, 1.5, 1.2 degrees at 95, 145, 245 GHz respectively. The expected performance of the three channels is limited by photon noise, resulting in a final sensitivity around 0.1-0.2 uK per beam, for a 13 days survey covering 25% of the sky.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Personal area technologies for internetworked services

    Get PDF

    Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Get PDF
    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems

    Automated reduction of instantaneous flow field images

    Get PDF
    An automated data reduction system for the analysis of interference fringe patterns obtained using the particle image velocimetry technique is described. This system is based on digital image processing techniques that have provided the flexibility and speed needed to obtain more complete automation of the data reduction process. As approached here, this process includes scanning/searching for data on the photographic record, recognition of fringe patterns of sufficient quality, and, finally, analysis of these fringes to determine a local measure of the velocity magnitude and direction. The fringe analysis as well as the fringe image recognition are based on full frame autocorrelation techniques using parallel processing capabilities

    Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons

    Get PDF
    We present a method for the study of quantum fluctuations of dissipative structures forming in nonlinear optical cavities, which we illustrate in the case of a degenerate, type I optical parametric oscillator. The method consists in (i) taking into account explicitly, through a collective variable description, the drift of the dissipative structure caused by the quantum noise, and (ii) expanding the remaining -internal- fluctuations in the biorthonormal basis associated to the linear operator governing the evolution of fluctuations in the linearized Langevin equations. We obtain general expressions for the squeezing and intensity fluctuations spectra. Then we theoretically study the squeezing properties of a special dissipative structure, namely, the bright cavity soliton. After reviewing our previous result that in the linear approximation there is a perfectly squeezed mode irrespectively of the values of the system parameters, we consider squeezing at the bifurcation points, and the squeezing detection with a plane--wave local oscillator field, taking also into account the effect of the detector size on the level of detectable squeezing.Comment: 10 figure

    Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Ultrasonic guided waves can be used to assess and monitor long elements of a structure from a single position. The greatest challenges for any guided wave system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency-dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this paper, a novel signal processing technique is presented using a combination of frequency-sweep measurement, sampling rate conversion, and Fourier transform. The technique is applied to synthesized and experimental data to identify different modes in complex ultrasonic guided wave signals. It is demonstrated throughout the paper that the technique also has the capability to derive the time of flight and group velocity dispersion curve of different wave modes in field inspections. © 2014 IEEE
    corecore