114,302 research outputs found

    Welfarism and the multidimensionality of welfare state legitimacy: evidence from The Netherlands, 2006

    Get PDF
    Is it possible that citizens who support a substantial role for government in the provision of welfare are, at the same time, critical about specific aspects of such provision? Based on confirmatory factor analyses, and using a 2006 Dutch survey, this study shows that welfare state legitimacy is indeed multidimensional, i.e. that opinions tend to cluster together in several dimensions referring to various aspects of the welfare state. There is partial evidence for the existence of a single, underlying welfarism dimension which consists basically of views regarding the range of governmental responsibility, as well as of the idea that these governmental provisions do not have unfavourable repercussions in economic or moral spheres. However, the separate dimensions cannot be reduced entirely to this overall welfarism dimension. This is illustrated by the finding that the various attitude dimensions are affected differently by socio-structural position and ideological dispositions

    Testing the dimensionality of the quality management construct

    Get PDF
    © 2014 Taylor & Francis. Numerous empirical studies have conceptualised quality management (QM) as either a multidimensional or unidimensional construct. While few prior studies tested some aspects of the assumed dimensional structure of the construct, no study has been found to have tested the construct's dimensionality using alternative factor analysis models. To gain a better insight into dimensional properties of the QM construct, this paper tests its dimensionality using three confirmatory factor analysis models (oblique factor model, higher-order factor model, and one-factor model) on a subset of data collected in a larger study that investigated the effects of QM on competitive advantage using a sample of 288 hotel managers in Egypt. The results of the three tests indicate that the QM construct is multidimensional. While this study contributes to advancing the QM theory and practice, further studies are needed to investigate the dimensional properties of the construct in greater depth. The results of this study may therefore stimulate research in this area and encourage the much needed debate on the dimensionality of the QM construct

    Evaluating Graph Signal Processing for Neuroimaging Through Classification and Dimensionality Reduction

    Full text link
    Graph Signal Processing (GSP) is a promising framework to analyze multi-dimensional neuroimaging datasets, while taking into account both the spatial and functional dependencies between brain signals. In the present work, we apply dimensionality reduction techniques based on graph representations of the brain to decode brain activity from real and simulated fMRI datasets. We introduce seven graphs obtained from a) geometric structure and/or b) functional connectivity between brain areas at rest, and compare them when performing dimension reduction for classification. We show that mixed graphs using both a) and b) offer the best performance. We also show that graph sampling methods perform better than classical dimension reduction including Principal Component Analysis (PCA) and Independent Component Analysis (ICA).Comment: 5 pages, GlobalSIP 201

    MaaSim: A Liveability Simulation for Improving the Quality of Life in Cities

    Get PDF
    Urbanism is no longer planned on paper thanks to powerful models and 3D simulation platforms. However, current work is not open to the public and lacks an optimisation agent that could help in decision making. This paper describes the creation of an open-source simulation based on an existing Dutch liveability score with a built-in AI module. Features are selected using feature engineering and Random Forests. Then, a modified scoring function is built based on the former liveability classes. The score is predicted using Random Forest for regression and achieved a recall of 0.83 with 10-fold cross-validation. Afterwards, Exploratory Factor Analysis is applied to select the actions present in the model. The resulting indicators are divided into 5 groups, and 12 actions are generated. The performance of four optimisation algorithms is compared, namely NSGA-II, PAES, SPEA2 and eps-MOEA, on three established criteria of quality: cardinality, the spread of the solutions, spacing, and the resulting score and number of turns. Although all four algorithms show different strengths, eps-MOEA is selected to be the most suitable for this problem. Ultimately, the simulation incorporates the model and the selected AI module in a GUI written in the Kivy framework for Python. Tests performed on users show positive responses and encourage further initiatives towards joining technology and public applications.Comment: 16 page

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    Discriminative Scale Space Tracking

    Full text link
    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5% in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50% higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.Comment: To appear in TPAMI. This is the journal extension of the VOT2014-winning DSST tracking metho
    • …
    corecore