919 research outputs found

    Persistent Localized Broadcasting in VANETs

    Get PDF
    We present a communication protocol, called LINGER, for persistent dissemination of delay-tolerant information to vehicular users, within a geographical area of interest. The goal of LINGER is to dispatch and confine information in localized areas of a mobile network with minimal protocol overhead and without requiring knowledge of the vehicles' routes or destinations. LINGER does not require roadside infrastructure support: it selects mobile nodes in a distributed, cooperative way and lets them act as "information bearers", providing uninterrupted information availability within a desired region. We analyze the performance of our dissemination mechanism through extensive simulations, in complex vehicular scenarios with realistic node mobility. The results demonstrate that LINGER represents a viable, appealing alternative to infrastructure-based solutions, as it can successfully drive the information toward a region of interest from a far away source and keep it local with negligible overhead. We show the effectiveness of such an approach in the support of localized broadcasting, in terms of both percentage of informed vehicles and information delivery delay, and we compare its performance to that of a dedicated, state-of-the-art protoco

    A trajectory-driven opportunistic routing protocol for VCPS

    Get PDF
    By exploring sensing, computing and communication capabilities on vehicles, Vehicular Cyber-Physical Systems (VCPS) are promising solutions to provide road safety and traffic efficiency in Intelligent Transportation Systems (ITS). Due to high mobility and sparse network density, VCPS could be severely affected by intermittent connectivity. In this paper, we propose a Trajectory-Driven Opportunistic Routing (TDOR) protocol, which is primarily applied for sparse networks, e.g., Delay/Disruption Tolerant Networks (DTNs). With geographic routing protocol designed in DTNs, existing works primarily consider the proximity to destination as a criterion for nexthop selections. Differently, by utilizing GPS information of onboard vehicle navigation system to help with data transmission, TDOR selects the relay node based on the proximity to trajectory. This aims to provide reliable and efficient message delivery, i.e., high delivery ratio and low transmission overhead. TDOR is more immune to disruptions, due to unfavorable mobility of intermediate nodes. Performance evaluation results show TDOR outperforms well known opportunistic geographic routing protocols, and achieves much lower routing overhead for comparable delivery ratio

    Image scoring in ad-hoc networks : an investigation on realistic settings

    Get PDF
    Encouraging cooperation in distributed Multi-Agent Systems (MAS) remains an open problem. Emergent application domains such as Mobile Ad-hoc Networks (MANETs) are characterised by constraints including sparse connectivity and a lack of direct interaction history. Image scoring, a simple model of reputation proposed by Nowak and Sigmund, exhibits low space and time complexity and promotes cooperation through indirect reciprocity, in which an agent can expect cooperation in the future without repeat interactions with the same partners. The low overheads of image scoring make it a promising technique for ad-hoc networking domains. However, the original investigation of Nowak and Sigmund is limited in that it (i) used a simple idealised setting, (ii) did not consider the effects of incomplete information on the mechanism’s efficacy, and (iii) did not consider the impact of the network topology connecting agents. We address these limitations by investigating more realistic values for the number of interactions agents engage in, and show that incomplete information can cause significant errors in decision making. As the proportion of incorrect decisions rises, the efficacy of image scoring falls and selfishness becomes more dominant. We evaluate image scoring on three different connection topologies: (i) completely connected, which closely approximates Nowak and Sigmund’s original setup, (ii) random, with each pair of nodes connected with a constant probability, and (iii) scale-free, which is known to model a number of real world environments including MANETs

    Proactive Multi-Copy Routing Protocol For Urban Vehicular Ad Hoc Network

    Get PDF
    A vehicular network topology is very dynamic compared to traditional mobile ad hoc network because of the movement and speed of the vehicles. Thus, a vehicular network is always partitioned due to this reason, especially if the vehicle density is low. In this situation where a direct end-to-end path between source and destination can be considered as non-existent, a regular ad hoc routing protocol with complete path discovery mechanism is not feasible since the routing path is usually disconnected due to the intermittent nature of network links. To overcome this problem, vehicles can be used as carriers to deliver messages using store-and-carry forwarding whenever forwarding option via wireless transmission is not available. It has been ascertained by the majority of researches in VANET that the carry and forward procedure can significantly affect an end-to-end delivery delay. This paper focuses on developing a proactive multi-copy routing protocol with carry and forward mechanism that is able to deliver packets from a source vehicle to a destination vehicle at a small delivery delay. The paper emphases on replicating data packets and distribute them to different relays. The proposed protocol creates enough diversity to reach the destination vehicle with a small end-to-end delivery delay while keeping low routing overhead by routing multiple copies independently. The simulation results in an urban grid model show that the proposed multi-copy forwarding protocol is able to deliver packets at small delivery delay compared to a single-copy forwarding algorithm without having to rely on real time traffic data or flooding mechanism

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Designing Smart Adaptive Flooding in MANET using Evolutionary Algorithm

    No full text
    International audienceThis paper deals with broadcasting warning / emergency messages in mobile ad hoc networks. Traditional broadcasting schemes tend to focus on usually high and homogeneous neighborhood densities environments. This paper presents a broadcasting protocol that locally and dynamically adapts its strategy to the neighborhood densities. The behavior of the protocol is tuned using various internal parameters. Multiple combinations of those parameters have been pre-computed as optimal solutions for a range of neighborhood densities, and the most relevant one is dynamically chosen depending on the locally perceived environment. The combinations were determined by coupling an evolutionary algorithm and a network simulator, using a statistically realistic radio-propagation model (Shadowing Pattern). This approach is compared with other probabilistic methods while broadcasting an emergency message in vehicular ad hoc networks with variable and heterogeneous vehicle densities. In such a context, it is expected from the network to enable each node to receive the warning message. The results show that our protocol covers the whole network, whereas other methods only have a probability of 0.57 to 0.9 to cover the entire network

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications
    corecore