3,969 research outputs found

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    High frequency oscillations as a correlate of visual perception

    Get PDF
    “NOTICE: this is the author’s version of a work that was accepted for publication in International journal of psychophysiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International journal of psychophysiology , 79, 1, (2011) DOI 10.1016/j.ijpsycho.2010.07.004Peer reviewedPostprin

    Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry

    Get PDF
    Cortical synchronization at γ-frequencies (35–90 Hz) has been proposed to define the connectedness among the local parts of a perceived visual object. This hypothesis is still under debate. We tested it under conditions of binocular rivalry (BR), where a monkey perceived alternations among conflicting gratings presented singly to each eye at orthogonal orientations. We made multi-channel microelectrode recordings of multi-unit activity (MUA) and local field potentials (LFP) from striate cortex (V1) during BR while the monkey indicated his perception by pushing a lever. We analyzed spectral power and coherence of MUA and LFP over 4–90 Hz. As in previous work, coherence of γ-signals in most pairs of recording locations strongly depended on grating orientation when stimuli were presented congruently in both eyes. With incongruent (rivalrous) stimulation LFP power was often consistently modulated in consonance with the perceptual state. This was not visible in MUA. These perception-related modulations of LFP occurred at low and medium frequencies (<30 Hz), but not at γ-frequencies. Perception-related modulations of LFP coherence were also restricted to the low–medium range. In conclusion, our results do not support the expectation that γ-synchronization in V1 is related to the perceptual state during BR, but instead suggest a perception-related role of synchrony at low and medium frequencies

    Modulating brain oscillations to drive brain function

    Get PDF
    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions

    Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    Get PDF
    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system

    A new unifying account of the roles of neuronal entrainment

    Get PDF
    Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of ‘neuronal entrainment’, which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles

    On the functions, mechanisms, and malfunctions of intracortical contextual modulation

    Get PDF
    A broad neuron-centric conception of contextual modulation is reviewed and re-assessed in the light of recent neurobiological studies of amplification, suppression, and synchronization. Behavioural and computational studies of perceptual and higher cognitive functions that depend on these processes are outlined, and evidence that those functions and their neuronal mechanisms are impaired in schizophrenia is summarized. Finally, we compare and assess the long-term biological functions of contextual modulation at the level of computational theory as formalized by the theories of coherent infomax and free energy reduction. We conclude that those theories, together with the many empirical findings reviewed, show how contextual modulation at the neuronal level enables the cortex to flexibly adapt the use of its knowledge to current circumstances by amplifying and grouping relevant activities and by suppressing irrelevant activities

    Gating Input to Visual Cortex by Feedback to LGN

    Full text link
    Anatomical studies have documented massive back-projections from higher to lower visual cortices and to the lateral geniculate nucleus (LGN). The large number of synapses from these sources suggest that they should have a profound influence on the information carried by feed-forward inputs to these cells. However, the functional role of these connections is unclear. In order to explore the role of the feedback connections, we have recorded spike trains from electrodes placed in LGN in the macaque monkey under sufenta anesthesia, and have compared LGN cells' activity with and without suppression by cooling of feedback from primary visual cortex (V1). Normally, magno and parvo LGN cells show a wide range over which their responses are proportional to stimulus contrast. Inactivation of V1 feedback causes LGN cells to become more nonlinear and less sensitive to high contrast than during normal conditions. Responses during V1 inactivation have a similar shape to those of retinal ganglion cells. We have also tested the properties of the so-called extended surround as they relate to cortical activity and to influences on responses to LGN stimulation. A model of this data suggests an interpretation in terms of two fnuctional components of feedback: a contrast-dependent component which dominates at high input contrast, and a constant baseline level of inhibitory feedback. We also show that the influence of the extended surround on the classical center mechanism is more complicated than a simple integration model.National Institutes of Health (EY-05156); Office of Naval Research (N00014-95-1-409
    corecore