2,117 research outputs found

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Efficiency Analysis of Swarm Intelligence and Randomization Techniques

    Full text link
    Swarm intelligence has becoming a powerful technique in solving design and scheduling tasks. Metaheuristic algorithms are an integrated part of this paradigm, and particle swarm optimization is often viewed as an important landmark. The outstanding performance and efficiency of swarm-based algorithms inspired many new developments, though mathematical understanding of metaheuristics remains partly a mystery. In contrast to the classic deterministic algorithms, metaheuristics such as PSO always use some form of randomness, and such randomization now employs various techniques. This paper intends to review and analyze some of the convergence and efficiency associated with metaheuristics such as firefly algorithm, random walks, and L\'evy flights. We will discuss how these techniques are used and their implications for further research.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1212.0220, arXiv:1208.0527, arXiv:1003.146

    A comparative study of maximum power point tracking techniques for a photovoltaic grid-connected system

    Get PDF
    Purpose. In recent years, the photovoltaic systems (PV) become popular due to several advantages among the renewable energy. Tracking maximum power point in PV systems is an important task and represents a challenging issue to increase their efficiency. Many different maximum power point tracking (MPPT) control methods have been proposed to adjust the peak power output and improve the generating efficiency of the PV system connected to the grid. Methods. This paper presents a Beta technique based MPPT controller to effectively track maximum power under all weather conditions. The effectiveness of this algorithm based MPPT is supplemented by a comparative study with incremental conductance (INC), particle swarm optimization (PSO), and fuzzy logic control (FLC). Results Faster MPPT, lower computational burden, and higher efficiency are the key contributions of the Beta based MPPT technique than the other three techniques.Мета. В останні роки фотоелектричні системи набули популярності завдяки низці переваг серед відновлюваних джерел енергії. Відстеження точки максимальної потужності у фотоелектричних системах є важливим завданням і складною проблемою для підвищення їх ефективності. Було запропоновано безліч різних методів керування відстеженням точки максимальної потужності (ВТМП) для регулювання пікової вихідної потужності та підвищення ефективності генерації фотоелектричної системи, підключеної до мережі. Методи. У цій статті представлений контролер ВТМП, заснований на бета-методі, для ефективного відстеження максимальної потужності за будь-яких погодних умов. Ефективність ВТМП на основі цього алгоритму доповнюється порівняльним дослідженням з інкрементною провідністю, оптимізацією рою частинок та нечітким логічним управлінням. Результати. Швидше ВТМП, менші витрати на обчислення та більша ефективність є ключовими перевагами методу ВТМП на основі бета-методу порівняно з трьома іншими методами

    A Study of recent classification algorithms and a novel approach for biosignal data classification

    Get PDF
    Analyzing and understanding human biosignals have been important research areas that have many practical applications in everyday life. For example, Brain Computer Interface is a research area that studies the connection between the human brain and external systems by processing and learning the brain signals called Electroencephalography (EEG) signals. Similarly, various assistive robotics applications are being developed to interpret eye or muscle signals in humans in order to provide control inputs for external devices. The efficiency for all of these applications depends heavily on being able to process and classify human biosignals. Therefore many techniques from Signal Processing and Machine Learning fields are applied in order to understand human biosignals better and increase the efficiency and success of these applications. This thesis proposes a new classifier for biosignal data classification utilizing Particle Swarm Optimization Clustering and Radial Basis Function Networks (RBFN). The performance of the proposed classifier together with several variations in the technique is analyzed by utilizing comparisons with the state of the art classifiers such as Fuzzy Functions Support Vector Machines (FFSVM), Improved Fuzzy Functions Support Vector Machines (IFFSVM). These classifiers are implemented on the classification of same biological signals in order to evaluate the proposed technique. Several clustering algorithms, which are used in these classifiers, such as K-means, Fuzzy c-means, and Particle Swarm Optimization (PSO), are studied and compared with each other based on clustering abilities. The effects of the analyzed clustering algorithms in the performance of Radial Basis Functions Networks classifier are investigated. Strengths and weaknesses are analyzed on various standard and EEG datasets. Results show that the proposed classifier that combines PSO clustering with RBFN classifier can reach or exceed the performance of these state of the art classifiers. Finally, the proposed classification technique is applied to a real-time system application where a mobile robot is controlled based on person\u27s EEG signal

    Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms

    Get PDF
    The main purpose of blasting operation is to produce desired and optimum mean size rock fragments. Smaller or fine fragments cause the loss of ore during loading and transportation, whereas large or coarser fragments need to be further processed, which enhances production cost. Therefore, accurate prediction of rock fragmentation is crucial in blasting operations. Mean fragment size (MFS) is a crucial index that measures the goodness of blasting designs. Over the past decades, various models have been proposed to evaluate and predict blasting fragmentation. Among these models, artificial intelligence (AI)-based models are becoming more popular due to their outstanding prediction results for multi-influential factors. In this study, support vector regression (SVR) techniques are adopted as the basic prediction tools, and five types of optimization algorithms, i.e. grid search (GS), grey wolf optimization (GWO), particle swarm optimization (PSO), genetic algorithm (GA) and salp swarm algorithm (SSA), are implemented to improve the prediction performance and optimize the hyper-parameters. The prediction model involves 19 influential factors that constitute a comprehensive blasting MFS evaluation system based on AI techniques. Among all the models, the GWO-v-SVR-based model shows the best comprehensive performance in predicting MFS in blasting operation. Three types of mathematical indices, i.e. mean square error (MSE), coefficient of determination (R2) and variance accounted for (VAF), are utilized for evaluating the performance of different prediction models. The R2, MSE and VAF values for the training set are 0.8355, 0.00138 and 80.98, respectively, whereas 0.8353, 0.00348 and 82.41, respectively for the testing set. Finally, sensitivity analysis is performed to understand the influence of input parameters on MFS. It shows that the most sensitive factor in blasting MFS is the uniaxial compressive strength. © 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Science
    corecore