4,521 research outputs found

    Modified Cramer-Rao bound for M-FSK signal parameter estimation in Cauchy and Gaussian noise

    Get PDF
    The Cramer-Rao bound (CRB) provides an efficient standard for evaluating the quality of standard parameter estimators. In this paper, a modified Cramer-Rao bounds (MCRB) for modulation parameter estimations of frequency-shift-keying (FSK) signals is proposed under the condition of the Gaussian and non-Gaussian additive interference. We extend the MCRB to the estimation of a vector of non-random parameters in the presence of nuisance parameters. Moreover, the MCRB is applied to the joint estimation of phase offset, frequency offsets, frequency deviation, and symbol period of FSK signal with two important special cases of alpha stable distributions, namely, the Cauchy and the Gaussian. The extensive simulation studies are conducted to contrast the MCRB for the modulation parameter vector in different noise environments

    True Cramer-Rao bounds for carrier and symbol synchronization

    Get PDF
    This contribution considers the Cramer-Rao bound (CRB) related to estimating the synchronization parameters (carrier phase, carrier frequency and time delay) of a noisy linearly modulated signal with random data symbols. We explore various scenarios, involving the estimation of a subset of the parameters while the other parameters are either considered as nuisance parameters or a priori known to the receiver. In addition, some results related to the CRB for coded transmission will be presented

    The Cramer-Rao Bound for channel estimation in block fading amplify-and-forward relaying networks

    Get PDF
    In this paper, we express the Cramer-Rao Bound (CRB) for channel coefficient and noise variance estimation at the destination of an Amplify-and- Forward (AF) based cooperative system, in terms of the a posteriori expectation of the codewords. An algorithm based on factor graphs can be applied in order to calculate this expectation. As the computation of the CRB is rather intensive, the modified CRB (MCRB), which is a looser bound, is derived in closed form. It can be shown that the MCRB coincides with the CRB in the high signal-to-noise ratio (SNR) limit and to that end the CRB/MCRB ratio is simulated in case of uncoded and convolutional encoded transmission

    Cramer-Rao bounds in the estimation of time of arrival in fading channels

    Get PDF
    This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this information to improve timing estimation by using time and space diversity. The received signal is modeled as coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship between the space-time diversity and the accuracy of the timing estimation.Peer ReviewedPostprint (published version

    Lower bounds on the estimation performance in low complexity quantize-and-forward cooperative systems

    Get PDF
    Cooperative communication can effectively mitigate the effects of multipath propagation fading by using relay channels to provide spatial diversity. A relaying scheme suitable for half-duplex devices is the quantize-and-forward (QF) protocol, in which the information received from the source is quantized at the relay before being forwarded to the destination. In this contribution, the Cramer-Rao bound (CRB) is obtained for the case where all channel parameters in a QF system are estimated at the destination. The CRB is a lower bound (LB) on the mean square estimation error (MSEE) of an unbiased estimate and can thus be used to benchmark practical estimation algorithms. Additionally, the modified Cramer-Rao bound (MCRB) is also presented, which is a looser but computationally less complex bound. An importance sampling technique is developed to speed up the computation of the MCRBs, and the MSEE performance of a practical estimation algorithm is compared with the (M)CRBs. We point out that the parameters of the source-destination and relay-destination channels can be accurately estimated but that inevitably the source-relay channel estimate is poor when the instantaneous SNR on the relay-destination channel is low; however, in this case, the decoder performance is not affected by the inaccurate source-relay channel estimate

    Conditional maximum likelihood timing recovery

    Get PDF
    The conditional maximum likelihood (CML) principle, well known in the context of sensor array processing, is applied to the problem of timing recovery. A new self-noise free CML-based timing error detector is derived. Additionally, a new (conditional) Cramer-Rao bound (CRB) for timing estimation is obtained, which is more accurate than the extensively used modified CRB (MCRB).Peer ReviewedPostprint (published version

    Performance Bounds for Parameter Estimation under Misspecified Models: Fundamental findings and applications

    Full text link
    Inferring information from a set of acquired data is the main objective of any signal processing (SP) method. In particular, the common problem of estimating the value of a vector of parameters from a set of noisy measurements is at the core of a plethora of scientific and technological advances in the last decades; for example, wireless communications, radar and sonar, biomedicine, image processing, and seismology, just to name a few. Developing an estimation algorithm often begins by assuming a statistical model for the measured data, i.e. a probability density function (pdf) which if correct, fully characterizes the behaviour of the collected data/measurements. Experience with real data, however, often exposes the limitations of any assumed data model since modelling errors at some level are always present. Consequently, the true data model and the model assumed to derive the estimation algorithm could differ. When this happens, the model is said to be mismatched or misspecified. Therefore, understanding the possible performance loss or regret that an estimation algorithm could experience under model misspecification is of crucial importance for any SP practitioner. Further, understanding the limits on the performance of any estimator subject to model misspecification is of practical interest. Motivated by the widespread and practical need to assess the performance of a mismatched estimator, the goal of this paper is to help to bring attention to the main theoretical findings on estimation theory, and in particular on lower bounds under model misspecification, that have been published in the statistical and econometrical literature in the last fifty years. Secondly, some applications are discussed to illustrate the broad range of areas and problems to which this framework extends, and consequently the numerous opportunities available for SP researchers.Comment: To appear in the IEEE Signal Processing Magazin
    • …
    corecore