5,780 research outputs found

    Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method

    Get PDF
    This paper presents the real time implementation of socially acceptable collision avoidance using the elastic band method for low speed autonomous shuttles operating in high pedestrian density environments. The modeling and validation of the research autonomous vehicle used in the experimental implementation is presented first, followed by the details of the Hardware-In-the-Loop connected and autonomous vehicle simulator used. The socially acceptable collision avoidance algorithm is formulated using the elastic band method as an online, local path modification algorithm. Parameter space based robust feedback plus feedforward steering controller design is used. Model-in-the-loop, Hardware-In-the-Loop and road testing in a proving ground are used to demonstrate the effectiveness of the real time implementation of the elastic band based socially acceptable collision avoidance method of this paper

    A Human Driver Model for Autonomous Lane Changing in Highways: Predictive Fuzzy Markov Game Driving Strategy

    Get PDF
    This study presents an integrated hybrid solution to mandatory lane changing problem to deal with accident avoidance by choosing a safe gap in highway driving. To manage this, a comprehensive treatment to a lane change active safety design is proposed from dynamics, control, and decision making aspects. My effort first goes on driver behaviors and relating human reasoning of threat in driving for modeling a decision making strategy. It consists of two main parts; threat assessment in traffic participants, (TV s) states, and decision making. The first part utilizes an complementary threat assessment of TV s, relative to the subject vehicle, SV , by evaluating the traffic quantities. Then I propose a decision strategy, which is based on Markov decision processes (MDPs) that abstract the traffic environment with a set of actions, transition probabilities, and corresponding utility rewards. Further, the interactions of the TV s are employed to set up a real traffic condition by using game theoretic approach. The question to be addressed here is that how an autonomous vehicle optimally interacts with the surrounding vehicles for a gap selection so that more effective performance of the overall traffic flow can be captured. Finding a safe gap is performed via maximizing an objective function among several candidates. A future prediction engine thus is embedded in the design, which simulates and seeks for a solution such that the objective function is maximized at each time step over a horizon. The combined system therefore forms a predictive fuzzy Markov game (FMG) since it is to perform a predictive interactive driving strategy to avoid accidents for a given traffic environment. I show the effect of interactions in decision making process by proposing both cooperative and non-cooperative Markov game strategies for enhanced traffic safety and mobility. This level is called the higher level controller. I further focus on generating a driver controller to complement the automated car’s safe driving. To compute this, model predictive controller (MPC) is utilized. The success of the combined decision process and trajectory generation is evaluated with a set of different traffic scenarios in dSPACE virtual driving environment. Next, I consider designing an active front steering (AFS) and direct yaw moment control (DYC) as the lower level controller that performs a lane change task with enhanced handling performance in the presence of varying front and rear cornering stiffnesses. I propose a new control scheme that integrates active front steering and the direct yaw moment control to enhance the vehicle handling and stability. I obtain the nonlinear tire forces with Pacejka model, and convert the nonlinear tire stiffnesses to parameter space to design a linear parameter varying controller (LPV) for combined AFS and DYC to perform a commanded lane change task. Further, the nonlinear vehicle lateral dynamics is modeled with Takagi-Sugeno (T-S) framework. A state-feedback fuzzy H∞ controller is designed for both stability and tracking reference. Simulation study confirms that the performance of the proposed methods is quite satisfactory

    Computational driver behavior models for vehicle safety applications

    Get PDF
    The aim of this thesis is to investigate how human driving behaviors can be formally described in mathematical models intended for online personalization of advanced driver assistance systems (ADAS) or offline virtual safety evaluations. Both longitudinal (braking) and lateral (steering) behaviors in routine driving and emergencies are addressed. Special attention is paid to driver glance behavior in critical situations and the role of peripheral vision.First, a hybrid framework based on autoregressive models with exogenous input (ARX-models) is employed to predict and classify driver control in real time. Two models are suggested, one targeting steering behavior and the other longitudinal control behavior. Although the predictive performance is unsatisfactory, both models can distinguish between different driving styles.Moreover, a basic model for drivers\u27 brake initiation and modulation in critical longitudinal situations (specifically for rear-end conflicts) is constructed. The model is based on a conceptual framework of noisy evidence accumulation and predictive processing. Several model extensions related to gaze behavior are also proposed and successfully fitted to real-world crashes and near-crashes. The influence of gaze direction is further explored in a driving simulator study, showing glance response times to be independent of the glance\u27s visual eccentricity, while brake response times increase for larger gaze angles, as does the rate of missed target detections.Finally, the potential of a set of metrics to quantify subjectively perceived risk in lane departure situations to explain drivers\u27 recovery steering maneuvers was investigated. The most influential factors were the relative yaw angle and splay angle error at steering initiation. Surprisingly, it was observed that drivers often initiated the recovery steering maneuver while looking off-road.To sum up, the proposed models in this thesis facilitate the development of personalized ADASs and contribute to trustworthy virtual evaluations of current, future, and conceptual safety systems. The insights and ideas contribute to an enhanced, human-centric system development, verification, and validation process. In the long term, this will likely lead to improved vehicle safety and a reduced number of severe injuries and fatalities in traffic

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years.This work was supported in part by the ECSEL Joint Undertaking, which funded the PRYSTINE project under Grant 783190, and in part by the AUTOLIB project (ELKARTEK 2019 ref. KK-2019/00035; Gobierno Vasco Dpto. Desarrollo económico e infraestructuras)

    A Review of Shared Control for Automated Vehicles: Theory and Applications

    Get PDF
    The last decade has shown an increasing interest on advanced driver assistance systems (ADAS) based on shared control, where automation is continuously supporting the driver at the control level with an adaptive authority. A first look at the literature offers two main research directions: 1) an ongoing effort to advance the theoretical comprehension of shared control, and 2) a diversity of automotive system applications with an increasing number of works in recent years. Yet, a global synthesis on these efforts is not available. To this end, this article covers the complete field of shared control in automated vehicles with an emphasis on these aspects: 1) concept, 2) categories, 3) algorithms, and 4) status of technology. Articles from the literature are classified in theory- and application-oriented contributions. From these, a clear distinction is found between coupled and uncoupled shared control. Also, model-based and model-free algorithms from these two categories are evaluated separately with a focus on systems using the steering wheel as the control interface. Model-based controllers tested by at least one real driver are tabulated to evaluate the performance of such systems. Results show that the inclusion of a driver model helps to reduce the conflicts at the steering. Also, variables such as driver state, driver effort, and safety indicators have a high impact on the calculation of the authority. Concerning the evaluation, driver-in-the-loop simulators are the most common platforms, with few works performed in real vehicles. Implementation in experimental vehicles is expected in the upcoming years
    corecore