706 research outputs found

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Coherent collective behaviour emerging from decentralised balancing of social feedback and noise

    Get PDF
    Decentralised systems composed of a large number of locally interacting agents often rely on coherent behaviour to execute coordinated tasks. Agents cooperate to reach a coherent collective behaviour by aligning their individual behaviour to the one of their neighbours. However, system noise, determined by factors such as individual exploration or errors, hampers and reduces collective coherence. The possibility to overcome noise and reach collective coherence is determined by the strength of social feedback, i.e. the number of communication links. On the one hand, scarce social feedback may lead to a noise-driven system and consequently incoherent behaviour within the group. On the other hand, excessively strong social feedback may require unnecessary computing by individual agents and/or may nullify the possible benefits of noise. In this study, we investigate the delicate balance between social feedback and noise, and its relationship with collective coherence. We perform our analysis through a locust-inspired case study of coherently marching agents, modelling the binary collective decision-making problem of symmetry breaking. For this case study, we analytically approximate the minimal number of communication links necessary to attain maximum collective coherence. To validate our findings, we simulate a 500-robot swarm and obtain good agreement between theoretical results and physics-based simulations. We illustrate through simulation experiments how the robot swarm, using a decentralised algorithm, can adaptively reach coherence for various noise levels by regulating the number of communication links. Moreover, we show that when the system is disrupted by increasing and decreasing the robot density, the robot swarm adaptively responds to these changes in real time. This decentralised adaptive behaviour indicates that the derived relationship between social feedback, noise and coherence is robust and swarm size independent

    15 - Self-Organisation & MAS: An Introduction

    Get PDF

    10 - Self-Organisation & MAS

    Get PDF

    Artificial Collective Intelligence Engineering: a Survey of Concepts and Perspectives

    Full text link
    Collectiveness is an important property of many systems--both natural and artificial. By exploiting a large number of individuals, it is often possible to produce effects that go far beyond the capabilities of the smartest individuals, or even to produce intelligent collective behaviour out of not-so-intelligent individuals. Indeed, collective intelligence, namely the capability of a group to act collectively in a seemingly intelligent way, is increasingly often a design goal of engineered computational systems--motivated by recent techno-scientific trends like the Internet of Things, swarm robotics, and crowd computing, just to name a few. For several years, the collective intelligence observed in natural and artificial systems has served as a source of inspiration for engineering ideas, models, and mechanisms. Today, artificial and computational collective intelligence are recognised research topics, spanning various techniques, kinds of target systems, and application domains. However, there is still a lot of fragmentation in the research panorama of the topic within computer science, and the verticality of most communities and contributions makes it difficult to extract the core underlying ideas and frames of reference. The challenge is to identify, place in a common structure, and ultimately connect the different areas and methods addressing intelligent collectives. To address this gap, this paper considers a set of broad scoping questions providing a map of collective intelligence research, mostly by the point of view of computer scientists and engineers. Accordingly, it covers preliminary notions, fundamental concepts, and the main research perspectives, identifying opportunities and challenges for researchers on artificial and computational collective intelligence engineering.Comment: This is the author's final version of the article, accepted for publication in the Artificial Life journal. Data: 34 pages, 2 figure
    • …
    corecore