492 research outputs found

    A New Arithmetically Incomplete First- Order Extension of Gl All Theorems of Which Have Cut Free Proofs

    Get PDF
    Reference [12] introduced a novel formula to formula translation tool (“formulators”) that enables syntactic metatheoretical investigations of first-order modal logics, bypassing a need to convert them first into Gentzen style logics in order to rely on cut elimination and the subformula property. In fact, the formulator tool, as was already demonstrated in loc. cit., is applicable even to the metatheoretical study of logics such as QGL, where cut elimination is (provably, [2]) unavailable. This paper applies the formulator approach to show the independence of the axiom schema _A ! _8xA of the logics M3 and ML3 of [17, 18, 11, 13]. This leads to the conclusion that the two logics obtained by removing this axiom are incomplete, both with respect to their natural Kripke structures and to arithmetical interpretations. In particular, the so modified ML3 is, similarly to QGL, an arithmetically incomplete first-order extension of GL, but, unlike QGL, all its theorems have cut free proofs. We also establish here, via formulators, a stronger version of the disjunction property for GL and QGL without going through Gentzen versions of these logics (compare with the more complex proofs in [2, 8]).This research was partially supported by NSERC grant No. 8250

    Title redacted for blind review

    Get PDF
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the axioms of a dynamic provability logic, which embeds GL within the modal μ\mu-calculus. Via correspondence results between modal logic and the bisimulation-invariant fragment of second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the notion of 'intuition-that'. I argue that intuition-that can further be shown to entrain conceptual elucidation, by way of figuring as a dynamic-interpretational modality which induces the reinterpretation of both domains of quantification and the intensions and hyperintensions of mathematical concepts that are formalizable in monadic first- and second-order formal languages. Hyperintensionality is countenanced via four models, without a decision as to which model is to be preferred. The first model makes intuition sensitive to hyperintensional topics, i.e. subject matters. The second model is a hyperintensional truthmaker semantics, in particular a novel epistemic two-dimensional truthmaker semantics. The third model is a topic-sensitive non-truthmaker epistemic two-dimensional semantics. The fourth model is a topic-sensitive epistemic two-dimensional truthmaker semantics

    An overview of interpretability logic

    Get PDF

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later
    corecore