537 research outputs found

    A GA-based simulation system for WMNs: comparison analysis for different number of flows, client distributions, DCF and EDCA functions

    Get PDF
    In this paper, we compare the performance of Distributed Coordination Function (DCF) and Enhanced Distributed Channel Access (EDCA) for normal and uniform distributions of mesh clients considering two Wireless Mesh Network (WMN) architectures. As evaluation metrics, we consider throughput, delay, jitter and fairness index metrics. For simulations, we used WMN-GA simulation system, ns-3 and Optimized Link State Routing. The simulation results show that for normal distribution, the throughput of I/B WMN is higher than Hybrid WMN architecture. For uniform distribution, in case of I/B WMN, the throughput of EDCA is a little bit higher than Hybrid WMN. However, for Hybrid WMN, the throughput of DCF is higher than EDCA. For normal distribution, the delay and jitter of Hybrid WMN are lower compared with I/B WMN. For uniform distribution, the delay and jitter of both architectures are almost the same. However, in the case of DCF for 20 flows, the delay and jitter of I/B WMN are lower compared with Hybrid WMN. For I/B architecture, in case of normal distribution the fairness index of DCF is higher than EDCA. However, for Hybrid WMN, the fairness index of EDCA is higher than DCF. For uniform distribution, the fairness index of few flows is higher than others for both WMN architectures.Peer ReviewedPostprint (author's final draft

    DYNAMIC ROUTING WITH CROSS-LAYER ADAPTATIONS FOR MULTI-HOP WIRELESS NETWORKS

    Get PDF
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are of- ten required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many mod- ern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, ad- dressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless- optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces addi- tional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control
    • …
    corecore