112 research outputs found

    Heuristics for Multidimensional Packing Problems

    Get PDF

    Approximating Smallest Containers for Packing Three-dimensional Convex Objects

    Get PDF
    We investigate the problem of computing a minimal-volume container for the non-overlapping packing of a given set of three-dimensional convex objects. Already the simplest versions of the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms. We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids under translation into an axis-parallel (rectangular) cuboid as container, for cuboids under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex container. This work gives the first approximability results for the computation of minimal volume containers for the objects described

    An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem

    Get PDF
    The irregular strip packing problem is a combinatorial optimization problem that requires to place a given set of two-dimensional polygons within a rectangular container so that no polygon overlaps with other polygons or protrudes from the container, where each polygon is not necessarily convex. The container has a fixed width, while its length can change so that all polygons are placed in it. The objective is to find a layout of the set of polygons that minimizes the length of the container. We propose an algorithm that separates overlapping polygons based on nonlinear programming, and an algorithm that swaps two polygons in a layout so as to find their new positions in the layout with the least overlap. We incorporate these algorithms as components into an iterated local search algorithm for the overlap minimization problem and then develop an algorithm for the irregular strip packing problem using the iterated local search algorithm. Computational comparisons on representative instances disclose that our algorithm is competitive with other existing algorithms. Moreover, our algorithm updates several best known results

    Optimal packing of convex polytopes using quasi-phi-functions

    No full text
    We study a packing problem of a given collection of convex polytopes into a rectangular container of minimal volume. Continuous rotations and translations of polytopes are allowed. In addition a given minimal allowable distances between polytopes are taking into account. We employ radical free quasi-phi-functions and adjusted quasi-phi-functions to describe placement constraints. The use of quasi-phi-functions, instead of phi-functions, allows us to simplify non-overlapping, as well as, to describe distance constraints, but there is a price to pay: now the optimization has to be performed over a larger set of parameters, including the extra variables used by our new functions. We provide an exact mathematical model of the problem as a nonlinear programming problem. We also develop an efficient solution algorithm which involves a starting point algorithm, using homothetic trasformations of geometric objects and efficient local optimization procedure, which allows us to runtime and memory). We present here a number of examples to demonstrate the efficiency of our methodology.РассматриваСтся Π·Π°Π΄Π°Ρ‡Π° ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡ€Π°Π½Π½ΠΈΠΊΠΎΠ² Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΌ ΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Π΅ минимального объСма. Π”ΠΎΠΏΡƒΡΠΊΠ°ΡŽΡ‚ΡΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ трансляции ΠΈ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ². Π£Ρ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ минимально допустимыС расстояния, Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌΠΈ. Для Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π²Π°Ρ†ΠΈΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ размСщСния ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ свободныС ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΠΎΠ² ΠΊΠ²Π°Π·ΠΈ-phi-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ псСвдонормализованныС ΠΊΠ²Π°Π·ΠΈ-phi-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ИспользованиС ΠΊΠ²Π°Π·ΠΈ-phi-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, вмСсто phi-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, позволяСт ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²ΠΈΠ΄ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ нСпСрСсСчСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² ΠΈ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π² аналитичСском Π²ΠΈΠ΄Π΅ ограничСния Π½Π° минимально допустимыС расстояния, Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌΠΈ. Однако процСсс ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ большСго числа ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ для ΠΊΠ²Π°Π·ΠΈ-phi-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Бтроится матСматичСская модСль Π² Π²ΠΈΠ΄Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ программирования. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ эффСктивный ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ: Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ, основанный Π½Π° гомотСтичСских прСобразованиях гСомСтричСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² для построСния допустимых стартовых Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° локальной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ, которая ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ рСсурсы (врСмя ΠΈ ΠΏΠ°ΠΌΡΡ‚ΡŒ). ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнных экспСримСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ².Π ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ Π·Π°Π΄Π°Ρ‡Π° ΡƒΠΏΠ°ΠΊΠΎΠ²ΠΊΠΈ ΠΎΠΏΡƒΠΊΠ»ΠΈΡ… Π±Π°Π³Π°Ρ‚ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΡ–Π² Ρƒ прямокутний ΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ об’єму. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π±Π°Π³Π°Ρ‚ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ ΠΏΡ€ΠΈΠΏΡƒΡΠΊΠ°ΡŽΡ‚ΡŒ Π±Π΅Π·ΠΏΠ΅Ρ€Π΅Ρ€Π²Π½Ρ– ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ΠΈ Ρ‚Π° трансляції. ΠšΡ€Ρ–ΠΌ Ρ‚ΠΎΠ³ΠΎ, Π²Ρ€Π°Ρ…ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ ΠΌΡ–Π½Ρ–ΠΌΠ°Π»ΡŒΠ½ΠΎ припустимі відстані ΠΌΡ–ΠΆ Π±Π°Π³Π°Ρ‚ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌΠΈ. Для ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎΡ— ΠΌΠΎΠ΄Π΅Π»Ρ– Π·Π°Π΄Π°Ρ‡Ρ– як Π·Π°Π΄Π°Ρ‡Ρ– Π½Π΅Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΠ³ΠΎ програмування Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒΡΡ Π²Ρ–Π»ΡŒΠ½Ρ– Π²Ρ–Π΄ Ρ€Π°Π΄ΠΈΠΊΠ°Π»Ρ–Π² ΠΊΠ²Π°Π·Ρ–-phi-Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ—. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ розв’язання, який дозволяє Π·ΠΌΠ΅Π½ΡˆΠΈΡ‚ΠΈ Ρ€ΠΎΠ·ΠΌΡ–Ρ€Π½Ρ–ΡΡ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρ– Ρ– ΠΎΠ±Ρ‡ΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½Ρ– Π²ΠΈΡ‚Ρ€Π°Ρ‚ΠΈ. НавСдСно числові ΠΏΡ€ΠΈΠΊΠ»Π°Π΄ΠΈ

    Minkowski Sum Construction and other Applications of Arrangements of Geodesic Arcs on the Sphere

    Full text link
    We present two exact implementations of efficient output-sensitive algorithms that compute Minkowski sums of two convex polyhedra in 3D. We do not assume general position. Namely, we handle degenerate input, and produce exact results. We provide a tight bound on the exact maximum complexity of Minkowski sums of polytopes in 3D in terms of the number of facets of the summand polytopes. The algorithms employ variants of a data structure that represents arrangements embedded on two-dimensional parametric surfaces in 3D, and they make use of many operations applied to arrangements in these representations. We have developed software components that support the arrangement data-structure variants and the operations applied to them. These software components are generic, as they can be instantiated with any number type. However, our algorithms require only (exact) rational arithmetic. These software components together with exact rational-arithmetic enable a robust, efficient, and elegant implementation of the Minkowski-sum constructions and the related applications. These software components are provided through a package of the Computational Geometry Algorithm Library (CGAL) called Arrangement_on_surface_2. We also present exact implementations of other applications that exploit arrangements of arcs of great circles embedded on the sphere. We use them as basic blocks in an exact implementation of an efficient algorithm that partitions an assembly of polyhedra in 3D with two hands using infinite translations. This application distinctly shows the importance of exact computation, as imprecise computation might result with dismissal of valid partitioning-motions.Comment: A Ph.D. thesis carried out at the Tel-Aviv university. 134 pages long. The advisor was Prof. Dan Halperi

    Packing of concave polyhedra with continuous rotations using nonlinear optimisation

    Get PDF
    We study the problem of packing a given collection of arbitrary, in general concave, polyhedra into a cuboid of minimal volume. Continuous rotations and translations of polyhedra are allowed. In addition, minimal allowable distances between polyhedra are taken into account. We derive an exact mathematical model using adjusted radical free quasi phi-functions for concave polyhedra to describe non-overlapping and distance constraints. The model is a nonlinear programming formulation. We develop an efficient solution algorithm, which employs a fast starting point algorithm and a new compaction procedure. The procedure reduces our problem to a sequence of nonlinear programming subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The benefit of this approach is borne out by the computational results, which include a comparison with previously published instances and new instances
    • …
    corecore