1,453 research outputs found

    Peirce's sign theory as an open-source R package.

    Get PDF
    Throughout Peirce’s writing, we witness his developing vision of a machine that scientists will eventually be able to create. Nadin (2010) raised the question:Why do computer scientists continue to ignore Peirce’s sign theory? A review of the literature on Peirce’s theory and the semiotics machine reveals that many authors discussed the machine;however, they donot differentiate between a physical computer machine and its software. This paper discusses the problematic issues involved in converting Peirce’s theory into a programming language, machine and software application. We demonstrate this challenge by introducing Peirce’s sign theory as a software application that runs under an open-source R environmen

    Probability and nonclassical logic

    Get PDF

    On the Unity and Continuity of Science: Structural Realism\u27s Underdetermination Problem and Reductive Structuralism\u27s Solution

    Get PDF
    Russell’s claim that only structural knowledge of the world is possible was influentially criticized by Newman as rendering scientific discoveries trivial. I show that a version of this criticism also applies to the “structural realism” more recently advocated by Worrall, which requires continuity of formal structure between predecessor and successor scientific theories. The problem is that structure, in its common set-theoretical construal, is radically underdetermined by the entities and relations over which it is defined, rendering intertheoretic continuity intolerably cheap. I show that this problem may be overcome by supplementing the purely formal relation of intertheoretic isomorphism with the semiformal “Ontological Reductive Links” developed by Moulines and others of the German “structuralist” approach to the philosophy of science

    A Dichotomic Analysis of the Surprise Examination Paradox

    Get PDF
    This paper proposes a new framework to solve the surprise examination paradox. I survey preliminary the main contributions to the literature related to the paradox. I introduce then a distinction between a monist and a dichotomic analysis of the paradox. With the help of a matrix notation, I also present a dichotomy that leads to distinguish two basically and structurally different notions of surprise, which are respectively based on a conjoint and a disjoint structure. I describe then how Quine's solution and Hall's reduction apply to the version of the paradox corresponding to the conjoint structure. Lastly, I expose a solution to the version of the paradox based on the disjoint structure

    Emergent Design

    Get PDF
    Explorations in Systems Phenomenology in Relation to Ontology, Hermeneutics and the Meta-dialectics of Design SYNOPSIS A Phenomenological Analysis of Emergent Design is performed based on the foundations of General Schemas Theory. The concept of Sign Engineering is explored in terms of Hermeneutics, Dialectics, and Ontology in order to define Emergent Systems and Metasystems Engineering based on the concept of Meta-dialectics. ABSTRACT Phenomenology, Ontology, Hermeneutics, and Dialectics will dominate our inquiry into the nature of the Emergent Design of the System and its inverse dual, the Meta-system. This is an speculative dissertation that attempts to produce a philosophical, mathematical, and theoretical view of the nature of Systems Engineering Design. Emergent System Design, i.e., the design of yet unheard of and/or hitherto non-existent Systems and Metasystems is the focus. This study is a frontal assault on the hard problem of explaining how Engineering produces new things, rather than a repetition or reordering of concepts that already exist. In this work the philosophies of E. Husserl, A. Gurwitsch, M. Heidegger, J. Derrida, G. Deleuze, A. Badiou, G. Hegel, I. Kant and other Continental Philosophers are brought to bear on different aspects of how new technological systems come into existence through the midwifery of Systems Engineering. Sign Engineering is singled out as the most important aspect of Systems Engineering. We will build on the work of Pieter Wisse and extend his theory of Sign Engineering to define Meta-dialectics in the form of Quadralectics and then Pentalectics. Along the way the various ontological levels of Being are explored in conjunction with the discovery that the Quadralectic is related to the possibility of design primarily at the Third Meta-level of Being, called Hyper Being. Design Process is dependent upon the emergent possibilities that appear in Hyper Being. Hyper Being, termed by Heidegger as Being (Being crossed-out) and termed by Derrida as Differance, also appears as the widest space within the Design Field at the third meta-level of Being and therefore provides the most leverage that is needed to produce emergent effects. Hyper Being is where possibilities appear within our worldview. Possibility is necessary for emergent events to occur. Hyper Being possibilities are extended by Wild Being propensities to allow the embodiment of new things. We discuss how this philosophical background relates to meta-methods such as the Gurevich Abstract State Machine and the Wisse Metapattern methods, as well as real-time architectural design methods as described in the Integral Software Engineering Methodology. One aim of this research is to find the foundation for extending the ISEM methodology to become a general purpose Systems Design Methodology. Our purpose is also to bring these philosophical considerations into the practical realm by examining P. Bourdieu’s ideas on the relationship between theoretical and practical reason and M. de Certeau’s ideas on practice. The relationship between design and implementation is seen in terms of the Set/Mass conceptual opposition. General Schemas Theory is used as a way of critiquing the dependence of Set based mathematics as a basis for Design. The dissertation delineates a new foundation for Systems Engineering as Emergent Engineering based on General Schemas Theory, and provides an advanced theory of Design based on the understanding of the meta-levels of Being, particularly focusing upon the relationship between Hyper Being and Wild Being in the context of Pure and Process Being

    A parallel implementation of Q-learning based on communication with cache

    Get PDF
    Q-Learning is a Reinforcement Learning method for solving sequential decision problems, where the utility of actions depends on a sequence of decisions and there exists uncertainty about the dynamics of the environment the agent is situated on. This general framework has allowed that Q-Learning and other Reinforcement Learning methods to be applied to a broad spectrum of complex real world problems such as robotics, industrial manufacturing, games and others. Despite its interesting properties, Q-learning is a very slow method that requires a long period of training for learning an acceptable policy. In order to solve or at least reduce this problem, we propose a parallel implementation model of Q-learning using a tabular representation and via a communication scheme based on cache. This model is applied to a particular problem and the results obtained with different processor configurations are reported. A brief discussion about the properties and current limitations of our approach is finally presented.Facultad de Informátic

    Naturalism and Process Ontology for Rhetorical Theory and Methodology: Reconsidering the Ideological Tautology

    Get PDF
    Rhetorical Theory and Criticism primarily features modes of close reading that reconstructs the meaning of a text by constructing meaning through contingent textual moments within a theoretical perspective, typically ideological criticism. The dominant mode of ideological critique projects ideology as an anterior and universal cause; this projection strips individual and group agency from within various systems by totalizing them under one system. I strive to answer how we can preserve descriptive acuity while opening and exploiting contingent gaps to make scholarship more efficacious for social justice. Chapter one explores the inevitability of infinite regress in response to problems of vagueness endemic to the philosophical enterprise. Chapter two explores Bergson’s Retrospective Illusion: strict modes of ontological necessity in a transcendental reasoning pattern produce tautological ontologies in which an effect becomes projected backwards as universal but, ultimately, illusory cause. Chapter three maps out Bergson’s solution to the “Retrospective Illusion” and names it the “Prospective Illusion.” In short, chains of sufficient reasoning are projected out towards tendencies in becoming such that universals are always in construction and never fully actual. Ontologies founded upon spatial necessity are replaced by a process ontology closely attuned to scientific process that folds space and time topologically into tendential becoming. Chapter four applies both illusions to rhetorical theory in its ideological and new materialist modes to argue for the usefulness of both models in breaking rhetorical theory out of its tacit methodological reliance upon reconstructive close reading and by re-evaluating some of rhetorical theory’s ontological assumptions. The project concludes with prospective directions in methodology

    Probability and nonclassical logic

    Get PDF
    Classical tautologies have probability. Classical contradictions have probability. These familiar features reflect a connection between standard probability theory and classical logic. In contexts in which classical logic is questioned—to deal with the paradoxes of self-reference, or vague propositions, for the purposes of scientific theory or metaphysical anti-realism—we must equally question standard probability theory. Section 1 covers the intended interpretation of ‘nonclassical logic’ and ‘probability’. Section 2 reviews the connection between classical logic and classical probability. Section 3 briefly reviews salient aspects of nonclassical logic, laying out a couple of simple examples to fix ideas. Section 4 explores modifications of probability theory. The variations laid down will be motivated initially by formal analogies to the classical setting. In section 5, however, we look at two foundational justifications for the presentations of ‘nonclassical probabilities’ that are arrived at. Sections 6-7 describe extensions of the nonclassical framework: to conditionalization and decision theory in particular. Section 8 will consider some alternative approaches, and section 9 evaluates progress

    Fluidization of Petri nets to improve the analysis of Discrete Event Systems

    Get PDF
    Las Redes de Petri (RdP) son un formalismo ampliamente aceptado para el modelado y análisis de Sistemas de Eventos Discretos (SED). Por ejemplo sistemas de manufactura, de logística, de tráfico, redes informáticas, servicios web, redes de comunicación, procesos bioquímicos, etc. Como otros formalismos, las redes de Petri sufren del problema de la ¿explosión de estados¿, en el cual el número de estados crece explosivamente respecto de la carga del sistema, haciendo intratables algunas técnicas de análisis basadas en la enumeración de estados. La fluidificación de las redes de Petri trata de superar este problema, pasando de las RdP discretas (en las que los disparos de las transiciones y los marcados de los lugares son cantidades enteras no negativas) a las RdP continuas (en las que los disparos de las transiciones, y por lo tanto los marcados se definen en los reales). Las RdP continuas disponen de técnicas de análisis más eficientes que las discretas. Sin embargo, como toda relajación, la fluidificación supone el detrimento de la fidelidad, dando lugar a la pérdida de propiedades cualitativas o cuantitativas de la red de Petri original. El objetivo principal de esta tesis es mejorar el proceso de fluidificación de las RdP, obteniendo un formalismo continuo (o al menos parcialmente) que evite el problema de la explosión de estados, mientras aproxime adecuadamente la RdP discreta. Además, esta tesis considera no solo el proceso de fluidificación sino también el formalismo de las RdP continuas en sí mismo, estudiando la complejidad computacional de comprobar algunas propiedades. En primer lugar, se establecen las diferencias que aparecen entre las RdP discretas y continuas, y se proponen algunas transformaciones sobre la red discreta que mejorarán la red continua resultante. En segundo lugar, se examina el proceso de fluidificación de las RdP autónomas (i.e., sin ninguna interpretación temporal), y se establecen ciertas condiciones bajo las cuales la RdP continua preserva determinadas propiedades cualitativas de la RdP discreta: limitación, ausencia de bloqueos, vivacidad, etc. En tercer lugar, se contribuye al estudio de la decidibilidad y la complejidad computacional de algunas propiedades comunes de la RdP continua autónoma. En cuarto lugar, se considera el proceso de fluidificación de las RdP temporizadas. Se proponen algunas técnicas para preservar ciertas propiedades cuantitativas de las RdP discretas estocásticas por las RdP continuas temporizadas. Por último, se propone un nuevo formalismo, en el cual el disparo de las transiciones se adapta a la carga del sistema, combinando disparos discretos y continuos, dando lugar a las Redes de Petri híbridas adaptativas. Las RdP híbridas adaptativas suponen un marco conceptual para la fluidificación parcial o total de las Redes de Petri, que engloba a las redes de Petri discretas, continuas e híbridas. En general, permite preservar propiedades de la RdP original, evitando el problema de la explosión de estados
    corecore