6,687 research outputs found

    Tight Upper Bounds for Streett and Parity Complementation

    Get PDF
    Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2Ω(nlgnk)2^{\Omega(n\lg nk)} and upper bound 2O(nklgnk)2^{O(nk\lg nk)}, where nn is the state size, kk is the number of Streett pairs, and kk can be as large as 2n2^{n}. Determining the complexity of Streett complementation has been an open question since the late '80s. In this paper show a complementation construction with upper bound 2O(nlgn+nklgk)2^{O(n \lg n+nk \lg k)} for k=O(n)k = O(n) and 2O(n2lgn)2^{O(n^{2} \lg n)} for k=ω(n)k = \omega(n), which matches well the lower bound obtained in \cite{CZ11a}. We also obtain a tight upper bound 2O(nlgn)2^{O(n \lg n)} for parity complementation.Comment: Corrected typos. 23 pages, 3 figures. To appear in the 20th Conference on Computer Science Logic (CSL 2011

    Nullity and Loop Complementation for Delta-Matroids

    Full text link
    We show that the symmetric difference distance measure for set systems, and more specifically for delta-matroids, corresponds to the notion of nullity for symmetric and skew-symmetric matrices. In particular, as graphs (i.e., symmetric matrices over GF(2)) may be seen as a special class of delta-matroids, this distance measure generalizes the notion of nullity in this case. We characterize delta-matroids in terms of equicardinality of minimal sets with respect to inclusion (in addition we obtain similar characterizations for matroids). In this way, we find that, e.g., the delta-matroids obtained after loop complementation and after pivot on a single element together with the original delta-matroid fulfill the property that two of them have equal "null space" while the third has a larger dimension.Comment: Changes w.r.t. v4: different style, Section 8 is extended, and in addition a few small changes are made in the rest of the paper. 15 pages, no figure

    The Group Structure of Pivot and Loop Complementation on Graphs and Set Systems

    Get PDF
    We study the interplay between principal pivot transform (pivot) and loop complementation for graphs. This is done by generalizing loop complementation (in addition to pivot) to set systems. We show that the operations together, when restricted to single vertices, form the permutation group S_3. This leads, e.g., to a normal form for sequences of pivots and loop complementation on graphs. The results have consequences for the operations of local complementation and edge complementation on simple graphs: an alternative proof of a classic result involving local and edge complementation is obtained, and the effect of sequences of local complementations on simple graphs is characterized.Comment: 21 pages, 7 figures, significant additions w.r.t. v3 are Thm 7 and Remark 2

    Lower Bounds for Complementation of omega-Automata Via the Full Automata Technique

    Full text link
    In this paper, we first introduce a lower bound technique for the state complexity of transformations of automata. Namely we suggest first considering the class of full automata in lower bound analysis, and later reducing the size of the large alphabet via alphabet substitutions. Then we apply such technique to the complementation of nondeterministic \omega-automata, and obtain several lower bound results. Particularly, we prove an \omega((0.76n)^n) lower bound for B\"uchi complementation, which also holds for almost every complementation or determinization transformation of nondeterministic omega-automata, and prove an optimal (\omega(nk))^n lower bound for the complementation of generalized B\"uchi automata, which holds for Streett automata as well

    On factorisation forests

    Get PDF
    The theorem of factorisation forests shows the existence of nested factorisations -- a la Ramsey -- for finite words. This theorem has important applications in semigroup theory, and beyond. The purpose of this paper is to illustrate the importance of this approach in the context of automata over infinite words and trees. We extend the theorem of factorisation forest in two directions: we show that it is still valid for any word indexed by a linear ordering; and we show that it admits a deterministic variant for words indexed by well-orderings. A byproduct of this work is also an improvement on the known bounds for the original result. We apply the first variant for giving a simplified proof of the closure under complementation of rational sets of words indexed by countable scattered linear orderings. We apply the second variant in the analysis of monadic second-order logic over trees, yielding new results on monadic interpretations over trees. Consequences of it are new caracterisations of prefix-recognizable structures and of the Caucal hierarchy.Comment: 27 page
    corecore