51,792 research outputs found

    INTRUSION PREDICTION SYSTEM FOR CLOUD COMPUTING AND NETWORK BASED SYSTEMS

    Get PDF
    Cloud computing offers cost effective computational and storage services with on-demand scalable capacities according to the customers’ needs. These properties encourage organisations and individuals to migrate from classical computing to cloud computing from different disciplines. Although cloud computing is a trendy technology that opens the horizons for many businesses, it is a new paradigm that exploits already existing computing technologies in new framework rather than being a novel technology. This means that cloud computing inherited classical computing problems that are still challenging. Cloud computing security is considered one of the major problems, which require strong security systems to protect the system, and the valuable data stored and processed in it. Intrusion detection systems are one of the important security components and defence layer that detect cyber-attacks and malicious activities in cloud and non-cloud environments. However, there are some limitations such as attacks were detected at the time that the damage of the attack was already done. In recent years, cyber-attacks have increased rapidly in volume and diversity. In 2013, for example, over 552 million customers’ identities and crucial information were revealed through data breaches worldwide [3]. These growing threats are further demonstrated in the 50,000 daily attacks on the London Stock Exchange [4]. It has been predicted that the economic impact of cyber-attacks will cost the global economy $3 trillion on aggregate by 2020 [5]. This thesis focused on proposing an Intrusion Prediction System that is capable of sensing an attack before it happens in cloud or non-cloud environments. The proposed solution is based on assessing the host system vulnerabilities and monitoring the network traffic for attacks preparations. It has three main modules. The monitoring module observes the network for any intrusion preparations. This thesis proposes a new dynamic-selective statistical algorithm for detecting scan activities, which is part of reconnaissance that represents an essential step in network attack preparation. The proposed method performs a statistical selective analysis for network traffic searching for an attack or intrusion indications. This is achieved by exploring and applying different statistical and probabilistic methods that deal with scan detection. The second module of the prediction system is vulnerabilities assessment that evaluates the weaknesses and faults of the system and measures the probability of the system to fall victim to cyber-attack. Finally, the third module is the prediction module that combines the output of the two modules and performs risk assessments of the system security from intrusions prediction. The results of the conducted experiments showed that the suggested system outperforms the analogous methods in regards to performance of network scan detection, which means accordingly a significant improvement to the security of the targeted system. The scanning detection algorithm has achieved high detection accuracy with 0% false negative and 50% false positive. In term of performance, the detection algorithm consumed only 23% of the data needed for analysis compared to the best performed rival detection method

    Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE

    Full text link
    As more businesses and users adopt cloud computing services, security vulnerabilities will be increasingly found and exploited. There are many technological and political challenges where investigation of potentially criminal incidents in the cloud are concerned. Security experts, however, must still be able to acquire and analyze data in a methodical, rigorous and forensically sound manner. This work applies the STRIDE asset-based risk assessment method to cloud computing infrastructure for the purpose of identifying and assessing an organization's ability to respond to and investigate breaches in cloud computing environments. An extension to the STRIDE risk assessment model is proposed to help organizations quickly respond to incidents while ensuring acquisition and integrity of the largest amount of digital evidence possible. Further, the proposed model allows organizations to assess the needs and capacity of their incident responders before an incident occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp. 223-236, 201

    Decision Support Tools for Cloud Migration in the Enterprise

    Full text link
    This paper describes two tools that aim to support decision making during the migration of IT systems to the cloud. The first is a modeling tool that produces cost estimates of using public IaaS clouds. The tool enables IT architects to model their applications, data and infrastructure requirements in addition to their computational resource usage patterns. The tool can be used to compare the cost of different cloud providers, deployment options and usage scenarios. The second tool is a spreadsheet that outlines the benefits and risks of using IaaS clouds from an enterprise perspective; this tool provides a starting point for risk assessment. Two case studies were used to evaluate the tools. The tools were useful as they informed decision makers about the costs, benefits and risks of using the cloud.Comment: To appear in IEEE CLOUD 201

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design

    Service Level Agreement-based GDPR Compliance and Security assurance in (multi)Cloud-based systems

    Get PDF
    Compliance with the new European General Data Protection Regulation (Regulation (EU) 2016/679) and security assurance are currently two major challenges of Cloud-based systems. GDPR compliance implies both privacy and security mechanisms definition, enforcement and control, including evidence collection. This paper presents a novel DevOps framework aimed at supporting Cloud consumers in designing, deploying and operating (multi)Cloud systems that include the necessary privacy and security controls for ensuring transparency to end-users, third parties in service provision (if any) and law enforcement authorities. The framework relies on the risk-driven specification at design time of privacy and security level objectives in the system Service Level Agreement (SLA) and in their continuous monitoring and enforcement at runtime.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644429 and No 780351, MUSA project and ENACT project, respectively. We would also like to acknowledge all the members of the MUSA Consortium and ENACT Consortium for their valuable help

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    Innovative public governance through cloud computing: Information privacy, business models and performance measurement challenges

    Get PDF
    Purpose: The purpose of this paper is to identify and analyze challenges and to discuss proposed solutions for innovative public governance through cloud computing. Innovative technologies, such as federation of services and cloud computing, can greatly contribute to the provision of e-government services, through scaleable and flexible systems. Furthermore, they can facilitate in reducing costs and overcoming public information segmentation. Nonetheless, when public agencies use these technologies, they encounter several associated organizational and technical changes, as well as significant challenges. Design/methodology/approach: We followed a multidisciplinary perspective (social, behavioral, business and technical) and conducted a conceptual analysis for analyzing the associated challenges. We conducted focus group interviews in two countries for evaluating the performance models that resulted from the conceptual analysis. Findings: This study identifies and analyzes several challenges that may emerge while adopting innovative technologies for public governance and e-government services. Furthermore, it presents suggested solutions deriving from the experience of designing a related platform for public governance, including issues of privacy requirements, proposed business models and key performance indicators for public services on cloud computing. Research limitations/implications: The challenges and solutions discussed are based on the experience gained by designing one platform. However, we rely on issues and challenges collected from four countries. Practical implications: The identification of challenges for innovative design of e-government services through a central portal in Europe and using service federation is expected to inform practitioners in different roles about significant changes across multiple levels that are implied and may accelerate the challenges' resolution. Originality/value: This is the first study that discusses from multiple perspectives and through empirical investigation the challenges to realize public governance through innovative technologies. The results emerge from an actual portal that will function at a European level. © Emerald Group Publishing Limited
    • …
    corecore