45,499 research outputs found

    Pricing Step Options under the CEV and other Solvable Diffusion Models

    Full text link
    We consider a special family of occupation-time derivatives, namely proportional step options introduced by Linetsky in [Math. Finance, 9, 55--96 (1999)]. We develop new closed-form spectral expansions for pricing such options under a class of nonlinear volatility diffusion processes which includes the constant-elasticity-of-variance (CEV) model as an example. In particular, we derive a general analytically exact expression for the resolvent kernel (i.e. Green's function) of such processes with killing at an exponential stopping time (independent of the process) of occupation above or below a fixed level. Moreover, we succeed in Laplace inverting the resolvent kernel and thereby derive newly closed-form spectral expansion formulae for the transition probability density of such processes with killing. The spectral expansion formulae are rapidly convergent and easy-to-implement as they are based simply on knowledge of a pair of fundamental solutions for an underlying solvable diffusion process. We apply the spectral expansion formulae to the pricing of proportional step options for four specific families of solvable nonlinear diffusion asset price models that include the CEV diffusion model and three other multi-parameter state-dependent local volatility confluent hypergeometric diffusion processes.Comment: 30 pages, 16 figures, submitted to IJTA

    Some numerical methods for solving stochastic impulse control in natural gas storage facilities

    Get PDF
    The valuation of gas storage facilities is characterized as a stochastic impulse control problem with finite horizon resulting in Hamilton-Jacobi-Bellman (HJB) equations for the value function. In this context the two catagories of solving schemes for optimal switching are discussed in a stochastic control framework. We reviewed some numerical methods which include approaches related to partial differential equations (PDEs), Markov chain approximation, nonparametric regression, quantization method and some practitioners’ methods. This paper considers optimal switching problem arising in valuation of gas storage contracts for leasing the storage facilities, and investigates the recent developments as well as their advantages and disadvantages of each scheme based on dynamic programming principle (DPP

    Pricing options and computing implied volatilities using neural networks

    Full text link
    This paper proposes a data-driven approach, by means of an Artificial Neural Network (ANN), to value financial options and to calculate implied volatilities with the aim of accelerating the corresponding numerical methods. With ANNs being universal function approximators, this method trains an optimized ANN on a data set generated by a sophisticated financial model, and runs the trained ANN as an agent of the original solver in a fast and efficient way. We test this approach on three different types of solvers, including the analytic solution for the Black-Scholes equation, the COS method for the Heston stochastic volatility model and Brent's iterative root-finding method for the calculation of implied volatilities. The numerical results show that the ANN solver can reduce the computing time significantly
    corecore