22 research outputs found

    On the complexity of the real Nullstellensatz in the 0-dimensional case

    Get PDF
    AbstractWe give single exponential bounds for the degrees in the identity of the Real Nullstellensatz for zero-dimensional ideals

    Using Elimination Theory to construct Rigid Matrices

    Get PDF
    The rigidity of a matrix A for target rank r is the minimum number of entries of A that must be changed to ensure that the rank of the altered matrix is at most r. Since its introduction by Valiant (1977), rigidity and similar rank-robustness functions of matrices have found numerous applications in circuit complexity, communication complexity, and learning complexity. Almost all nxn matrices over an infinite field have a rigidity of (n-r)^2. It is a long-standing open question to construct infinite families of explicit matrices even with superlinear rigidity when r = Omega(n). In this paper, we construct an infinite family of complex matrices with the largest possible, i.e., (n-r)^2, rigidity. The entries of an n x n matrix in this family are distinct primitive roots of unity of orders roughly exp(n^2 log n). To the best of our knowledge, this is the first family of concrete (but not entirely explicit) matrices having maximal rigidity and a succinct algebraic description. Our construction is based on elimination theory of polynomial ideals. In particular, we use results on the existence of polynomials in elimination ideals with effective degree upper bounds (effective Nullstellensatz). Using elementary algebraic geometry, we prove that the dimension of the affine variety of matrices of rigidity at most k is exactly n^2-(n-r)^2+k. Finally, we use elimination theory to examine whether the rigidity function is semi-continuous.Comment: 25 Pages, minor typos correcte

    Polar Varieties, Real Equation Solving and Data-Structures: The hypersurface case

    Get PDF
    In this paper we apply for the first time a new method for multivariate equation solving which was developed in \cite{gh1}, \cite{gh2}, \cite{gh3} for complex root determination to the {\em real} case. Our main result concerns the problem of finding at least one representative point for each connected component of a real compact and smooth hypersurface. The basic algorithm of \cite{gh1}, \cite{gh2}, \cite{gh3} yields a new method for symbolically solving zero-dimensional polynomial equation systems over the complex numbers. One feature of central importance of this algorithm is the use of a problem--adapted data type represented by the data structures arithmetic network and straight-line program (arithmetic circuit). The algorithm finds the complex solutions of any affine zero-dimensional equation system in non-uniform sequential time that is {\em polynomial} in the length of the input (given in straight--line program representation) and an adequately defined {\em geometric degree of the equation system}. Replacing the notion of geometric degree of the given polynomial equation system by a suitably defined {\em real (or complex) degree} of certain polar varieties associated to the input equation of the real hypersurface under consideration, we are able to find for each connected component of the hypersurface a representative point (this point will be given in a suitable encoding). The input equation is supposed to be given by a straight-line program and the (sequential time) complexity of the algorithm is polynomial in the input length and the degree of the polar varieties mentioned above.Comment: Late
    corecore