1,886 research outputs found

    Time frequency analysis in terahertz pulsed imaging

    Get PDF
    Recent advances in laser and electro-optical technologies have made the previously under-utilized terahertz frequency band of the electromagnetic spectrum accessible for practical imaging. Applications are emerging, notably in the biomedical domain. In this chapter the technique of terahertz pulsed imaging is introduced in some detail. The need for special computer vision methods, which arises from the use of pulses of radiation and the acquisition of a time series at each pixel, is described. The nature of the data is a challenge since we are interested not only in the frequency composition of the pulses, but also how these differ for different parts of the pulse. Conventional and short-time Fourier transforms and wavelets were used in preliminary experiments on the analysis of terahertz pulsed imaging data. Measurements of refractive index and absorption coefficient were compared, wavelet compression assessed and image classification by multidimensional clustering techniques demonstrated. It is shown that the timefrequency methods perform as well as conventional analysis for determining material properties. Wavelet compression gave results that were robust through compressions that used only 20% of the wavelet coefficients. It is concluded that the time-frequency methods hold great promise for optimizing the extraction of the spectroscopic information contained in each terahertz pulse, for the analysis of more complex signals comprising multiple pulses or from recently introduced acquisition techniques

    Canonical Cortical Field Theories

    Full text link
    We characterise the dynamics of neuronal activity, in terms of field theory, using neural units placed on a 2D-lattice modelling the cortical surface. The electrical activity of neuronal units was analysed with the aim of deriving a neural field model with a simple functional form that still able to predict or reproduce empirical findings. Each neural unit was modelled using a neural mass and the accompanying field theory was derived in the continuum limit. The field theory comprised coupled (real) Klein-Gordon fields, where predictions of the model fall within the range of experimental findings. These predictions included the frequency spectrum of electric activity measured from the cortex, which was derived using an equipartition of energy over eigenfunctions of the neural fields. Moreover, the neural field model was invariant, within a set of parameters, to the dynamical system used to model each neuronal mass. Specifically, topologically equivalent dynamical systems resulted in the same neural field model when connected in a lattice; indicating that the fields derived could be read as a canonical cortical field theory. We specifically investigated non-dispersive fields that provide a structure for the coding (or representation) of afferent information. Further elaboration of the ensuing neural field theory, including the effect of dispersive forces, could be of importance in the understanding of the cortical processing of information.Comment: 19 pages, 1 figur

    Novel pulse-echo ultrasound methods for diagnostics of osteoporosis

    Get PDF
    • …
    corecore