6,645 research outputs found

    On the lengths of divisible codes

    Get PDF
    In this article, the effective lengths of all qrq^r-divisible linear codes over Fq\mathbb{F}_q with a non-negative integer rr are determined. For that purpose, the Sq(r)S_q(r)-adic expansion of an integer nn is introduced. It is shown that there exists a qrq^r-divisible Fq\mathbb{F}_q-linear code of effective length nn if and only if the leading coefficient of the Sq(r)S_q(r)-adic expansion of nn is non-negative. Furthermore, the maximum weight of a qrq^r-divisible code of effective length nn is at most σqr\sigma q^r, where σ\sigma denotes the cross-sum of the Sq(r)S_q(r)-adic expansion of nn. This result has applications in Galois geometries. A recent theorem of N{\u{a}}stase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.Comment: 17 pages, typos corrected; the paper was originally named "An improvement of the Johnson bound for subspace codes

    Equidistant Codes in the Grassmannian

    Full text link
    Equidistant codes over vector spaces are considered. For kk-dimensional subspaces over a large vector space the largest code is always a sunflower. We present several simple constructions for such codes which might produce the largest non-sunflower codes. A novel construction, based on the Pl\"{u}cker embedding, for 1-intersecting codes of kk-dimensional subspaces over \F_q^n, n≥(k+12)n \geq \binom{k+1}{2}, where the code size is qk+1−1q−1\frac{q^{k+1}-1}{q-1} is presented. Finally, we present a related construction which generates equidistant constant rank codes with matrices of size n×(n2)n \times \binom{n}{2} over \F_q, rank n−1n-1, and rank distance n−1n-1.Comment: 16 page

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces

    Full text link
    In this paper we investigate partial spreads of H(2n−1,q2)H(2n-1,q^2) through the related notion of partial spread sets of hermitian matrices, and the more general notion of constant rank-distance sets. We prove a tight upper bound on the maximum size of a linear constant rank-distance set of hermitian matrices over finite fields, and as a consequence prove the maximality of extensions of symplectic semifield spreads as partial spreads of H(2n−1,q2)H(2n-1,q^2). We prove upper bounds for constant rank-distance sets for even rank, construct large examples of these, and construct maximal partial spreads of H(3,q2)H(3,q^2) for a range of sizes

    Classification of large partial plane spreads in PG(6,2)PG(6,2) and related combinatorial objects

    Get PDF
    In this article, the partial plane spreads in PG(6,2)PG(6,2) of maximum possible size 1717 and of size 1616 are classified. Based on this result, we obtain the classification of the following closely related combinatorial objects: Vector space partitions of PG(6,2)PG(6,2) of type (31641)(3^{16} 4^1), binary 3×43\times 4 MRD codes of minimum rank distance 33, and subspace codes with parameters (7,17,6)2(7,17,6)_2 and (7,34,5)2(7,34,5)_2.Comment: 31 pages, 9 table

    A geometric proof of the upper bound on the size of partial spreads in H(4n+1, q²)

    Get PDF
    We give a geometric proof of the upper bound of q(2n+1) + 1 on the size of partial spreads in the polar space H(4n + 1, q(2)). This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in H(4n + 1, q(2))
    • …
    corecore