9,819 research outputs found

    RASCAL: calculation of graph similarity using maximum common edge subgraphs

    Get PDF
    A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection

    On parameterized complexity of the Multi-MCS problem

    Get PDF
    AbstractWe introduce the maximum common subgraph problem for multiple graphs (Multi-MCS) inspired by various biological applications such as multiple alignments of gene sequences, protein structures, metabolic pathways, or protein–protein interaction networks. Multi-MCS is a generalization of the two-graph Maximum Common Subgraph problem (MCS). On the basis of the framework of parameterized complexity theory, we derive the parameterized complexity of Multi-MCS for various parameters for different classes of graphs. For example, for directed graphs with labeled vertices, we prove that the parameterized m-Multi-MCS problem is W[2]-hard, while the parameterized k-Multi-MCS problem is W[t]-hard (∀t≥1), where m and k are the size of the maximum common subgraph and the number of multiple graphs, respectively. We show similar results for other parameterized versions of the Multi-MCS problem for directed graphs with vertex labels and undirected graphs with vertex and edge labels by giving linear FPT reductions of the problems from parameterized versions of the longest common subsequence problem. Likewise, for unlabeled undirected graphs, we show that a parameterized version of the Multi-MCS problem with a fixed number of input graphs is W[1]-complete by showing a linear FPT reduction to and from a parameterized version of the maximum clique problem

    Moving in temporal graphs with very sparse random availability of edges

    Get PDF
    In this work we consider temporal graphs, i.e. graphs, each edge of which is assigned a set of discrete time-labels drawn from a set of integers. The labels of an edge indicate the discrete moments in time at which the edge is available. We also consider temporal paths in a temporal graph, i.e. paths whose edges are assigned a strictly increasing sequence of labels. Furthermore, we assume the uniform case (UNI-CASE), in which every edge of a graph is assigned exactly one time label from a set of integers and the time labels assigned to the edges of the graph are chosen randomly and independently, with the selection following the uniform distribution. We call uniform random temporal graphs the graphs that satisfy the UNI-CASE. We begin by deriving the expected number of temporal paths of a given length in the uniform random temporal clique. We define the term temporal distance of two vertices, which is the arrival time, i.e. the time-label of the last edge, of the temporal path that connects those vertices, which has the smallest arrival time amongst all temporal paths that connect those vertices. We then propose and study two statistical properties of temporal graphs. One is the maximum expected temporal distance which is, as the term indicates, the maximum of all expected temporal distances in the graph. The other one is the temporal diameter which, loosely speaking, is the expectation of the maximum temporal distance in the graph. We derive the maximum expected temporal distance of a uniform random temporal star graph as well as an upper bound on both the maximum expected temporal distance and the temporal diameter of the normalized version of the uniform random temporal clique, in which the largest time-label available equals the number of vertices. Finally, we provide an algorithm that solves an optimization problem on a specific type of temporal (multi)graphs of two vertices.Comment: 30 page

    Algorithms for square-3PC(·, ·)-free Berge graphs

    Get PDF
    We consider the class of graphs containing no odd hole, no odd antihole, and no configuration consisting of three paths between two nodes such that any two of the paths induce a hole, and at least two of the paths are of length 2. This class generalizes clawfree Berge graphs and square-free Berge graphs. We give a combinatorial algorithm of complexity O(n7) to find a clique of maximum weight in such a graph. We also consider several subgraph-detection problems related to this class
    • …
    corecore